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1 Maximum Likelihood Model Fitting

Given a set of measurements X , a model l is estimated by maximising likelihood function

l∗ = arg max
l
p(X|l) . (1)

Hence the conditional probability of the measurements given the model p(X|l) must be known. Should
also a prior probability p(l) of the model be known, the maximum a posteriori estimate can be found
by maximising p(X|l)p(l) instead.

In the case of fitting a line to a set of points, the measurements consists of a set of n point locations,
X = {x 1, . . . ,xn} and the model l is an appropriate line representation. The conditional probability
of the points given the line is derived in the next sections.

2 Trivial Example: Single Point Fitting

For the purpose of demonstration, a trivial example is considered first. The model l in (1) is a single
point x . Given the point (Euclidean) coordinates, the measurement is modelled as this very point
polluted by an isotropic Gaussian noise,

x i = x + e i , (2)

e i ∼ p(e i) = N (e i;0 ,Σe) , Σe =

[
σ2
e 0

0 σ2
e

]
) . (3)

Thus the conditional probability of a single measurement is

p(x i|x ) = N (x i − x ;0 ,Σe) = N (x i;x ,Σe) =
1

2π
√
|Σe|

e0.5(x i−x )>Σe1 (x i−x ) =
1

2πσ2
e

e
1

2σ2
e
||x i−x ||2

(4)

The measurements are assumed to be independent, so the overall probability of the measurements is

p(X|x ) = n!
n∏
i=1

p(x i|x ) = n!
n∏
i=1

N (x i − x ;0 ,Σe) , (5)

where the n! term is added since the order of the measurements does not matter.

The ML estimate of the point from the measurements is then

x ∗ = arg max
x

p(X|x ) = arg min
x

(− log p(X|x )) =

= arg min
x

{
− log(n!) +

n∑
i=1

(
− log

1
2πσ2

e

+
||x i − x ||2

2σ2
e

)}
= arg min

x

n∑
i=1

||x i − x ||2 , (6)
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where a monotonous function (log) was applied and some constants were omitted. This simplification
obviously does not affect the result, and transforms the original problem of likelihood maximisation
into the sum-of-squared-errors (SSE) minimisation.

Note, that in this simple case the coordinate components x, y, . . . are independent. Hence the minimiser
of (6) is found in closed-form simply by laying the derivation according to each component of x equal
zero,

0 =
∂

∂x

n∑
i=1

||x i − x ∗||2 =
n∑
i=1

2(x ∗ − x i) = 2nx ∗ − 2
n∑
i=1

x i ⇒ x ∗ =
1
n

n∑
i=1

x i . (7)

As expected, the ML estimate (in arbitrary number of dimensions) of the point under isotropic Gaus-
sian noise is simply the mean of the set X .

3 Model for Noisy Planar Line and ML Estimate

A normalised planar line l = (n>, d) is given, where n is normal vector. There is also direction vector
u , such that u ⊥ n . These two vectors forms a basis of line coordinates. A point x̃ (exactly) lying
on the line is created as

x̃ i =
[

u n
] [ ti
−d

]
, (8)

where t is a parameter along a line. Note, that the Euclidean coordinates of points are used. The
distribution of the parameter is chosen as

ti ∼ p(ti) = N (ti;µt, σt) . (9)

The measurement x i is the line point polluted by an isotropic Gaussian noise,

x i = x̃ i + e i , (10)

e i ∼ p(e i) = N (e i;

[
0
0

]
,

[
σe 0
0 σe

]
) . (11)

The noise can be expressed in the line coordinates as

e i =
[

u n
] [ tei

dei

]
, pe

([
dei
tei

])
= N (dei ; 0, σe)N (tei ; 0, σe) , (12)

and the measurement expressed in the line coordinates is then

x i =
[

u n
] [ ti + tei
−d+ dei

]
. (13)

This leads to (using transformation of probability by linear transformation with unit Jacobian)

p(x i|l , ti) = pe

([
u>

n>

]
x i −

[
ti
−d

])
= N (u>x i − ti; 0, σe)N (n>x i + d︸ ︷︷ ︸

di

; 0, σe) . (14)

Here the term di = n>x i + d represents the orthogonal distance of the point x i to the line l .

Now the probability p(x i|l) is derived from the joint p.d.f. p(x i, ti|l) by marginalisation over ti.

p(x i|l) =
∞∫
−∞

p(x i, ti|l) dti =
∞∫
−∞

p(x i|l , ti) p(ti) dti =

=
∞∫
−∞

N (u>x i − ti; 0, σe)N (di; 0, σe)N (ti;µt, σt) dti =
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= N (di; 0, σe)
∞∫
−∞

N (ti;−u>x i, σe)N (ti;µt, σt) dti =

= N (di; 0, σe)
1√

2π(σ2
e + σ2

t )
e
−(−u>xi−µt)

2

2(σ2
e+σ2

t
) (15)

(The last step with fruitful help of Maple solver.)

Now the variance σt is chosen much larger than the size of image, where the points are observed, the
mean µt is chosen e.g. zero (assuming that origin is in the image centre). Then the exponent is close
to zero, and the probability is approximately

p(x i|l) ≈ γN (di; 0, σe) , (16)

where γ is some constant.

Again, the measurements are assumed to be independent, so the overall conditional probability of the
measurements is

p(X|l) = n!
n∏
i=1

p(x i|l) = n! γn
n∏
i=1

N (di; 0, σe) . (17)

Finally, log is applied and unnecessary constants are omitted to form a log-likelihood to minimise.
The ML estimate of the line from the measurements is then

l∗ = arg max
l
p(X|l) = arg min

l
(− log p(X|l)) =

= arg min
l

{
− log(n!γn) +

n∑
i=1

(
− log

1√
2πσ2

e

+
d2
i

2σ2
e

)}
= arg min

x

n∑
i=1

d2
i . (18)

Again, the original problem of likelihood maximisation is transformed into the sum-of-squared-errors
(SSE) minimisation. There is no closed form solution of (18), some numerical approach must be used.

4 Model for Noisy Planar Line Points with Outliers.

The process that creates set of points for a given line l is modelled by following three random processes
that participates on generating each planar point x i.

1. Label generator. A label Li ∈ {I,O} determining if a point is inlier or outlier is randomly drawn.

Li ∼ pL(Li) , pL(Li = I) = α (const) , pL(Li = 0) = 1− α

2. Inlier generator. If Li = I, a point location x i belonging to the line is generated as described in
Section 3.

x i ∼ p(x i|l)

3. Outlier generator. If Li = O, an outlier (not dependent on the line) is drawn from uniform
distribution, assuming finite image of area 1/β.

x i ∼ pO(x i) = β(const.)

This leads the robust joint probability of point locations and labels, given the line, to be

pR(x i, Li|l) =

{
αp(x i|l) if Li = I
(1− α)β if Li = O

(19)
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The resulting robust probability pR(x i|l) is obtained by marginalisation (over all values of Li) as

pR(x i|l) =
∑

Li∈{I,O}
pR(x i, Li|l) = αp(x i|l) + (1− α)β . (20)

The points are assumed to be independent, so using (16) the overall robust probability of measurements
is

pR(X|l) = n!
n∏
i=1

pR(x i|l) = n!
n∏
i=1

(αp(x i|l) + (1− α)β) =

= n!
n∏
i=1

 αγ√
2πσ2

e

e
−

d2
i

2σ2
e + (1− α)β

 .

= c1

n∏
i=1

e− d2
i

2σ2
e
+c2

 , (21)

where c1, c2 are some constants. Again, cost function from minus log-likelihood is constructed prior
to optimisation

− log (pR(X|l)) = −c1 −
n∑
i=1

log

e−d2i2σ2
e + c2


C(l) =

n∑
i=1

−e2σ2
e log

e− d2
i

2σ2
e + e

θ2

2σ2
e

 =
n∑
i=1

C1(di) . (22)

Here the constant c2 was replaced by a threshold θ. The cost function (robust penalty) C1 is analysed
in the next section.

4.1 Robust Penalty

The previous section reveals a typical property of the robust model fitting problem under Gaussian
noise: the error (di in the case of line fitting) is modelled using a mixture of normal and constant
probability density. The mixture p.d.f and its negative logarithm is

p(di) = αN (di; 0, σe) + (1− α)β , − log (p(di)) = − log

 α√
2πσ2

e

e
−d2
i

2σ2
e + (1− α)β

 (23)

where α is a mixing coefficients. Example is in Figure 1.

There is an important value of di on the intersection of both densities (i.e. the probability of both
processes is the same), denoted as a threshold θ.

α√
2πσ2

e

e
−θ2

2σ2
e = (1− α)β ⇒ θ =

√
− log

(
(1− α)β

α

√
2πσ2

e

)
2σ2

e (24)

Usually, the threshold is used to parametrise the mixture, and the Gaussian variance σe is assumed
approx σe ∈ (0.1θ, 0.5θ) (the variance affects only the curvature of the penalty function near the
threshold). Then the robust penalty function after removing some constants is

C1(di) = −2σ2
e log

e−d2i2σ2
e + e

−θ2

2σ2
e

 . (25)
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Fig. 1: Mixture of a Gaussian and a constant probability density. (a) Probability density function and (b) its
negative logarithm.
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Fig. 2: Approximation of a robust penalty. (a) penalty function C1 (26), (b) likelihood function L1 (28).

This function can be approximated by two segments, one quadratic and one constant,

C1(di) ≈
{
d2
i if |di| < θ
θ2 if |di| > θ

. (26)

The original problem is then solved by a numeric minimisation of
∑
C1(di). Alternatively, the negative

of C1(di) can be used for maximisation, i.e. (with a constant shift that do not affect optimisation),

L1(di) = 1− C1(di)
θ2

, (27)

which is then approximated as

L1(di) ≈
{

1− di
θ

2
if |di| < θ

0 if |di| > θ
. (28)

Both approximations are demonstrated in Figure 2. Then the original problem is solved by a numeric
maximisation of

∑
L1(di).
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