Fitting of a Planar Line
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1 Maximum Likelihood Model Fitting

Given a set of measurements X', a model [ is estimated by maximising likelihood function
I* =arg mlaxp(/'\,’|l) . (1)

Hence the conditional probability of the measurements given the model p(X'|l) must be known. Should
also a prior probability p(l) of the model be known, the maximum a posteriori estimate can be found
by maximising p(X|l)p(l) instead.

In the case of fitting a line to a set of points, the measurements consists of a set of n point locations,
X ={z1,...,z,} and the model [ is an appropriate line representation. The conditional probability
of the points given the line is derived in the next sections.

2 Trivial Example: Single Point Fitting

For the purpose of demonstration, a trivial example is considered first. The model I in (1) is a single
point . Given the point (Euclidean) coordinates, the measurement is modelled as this very point
polluted by an isotropic Gaussian noise,
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Thus the conditional probability of a single measurement is
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The measurements are assumed to be independent, so the overall probability of the measurements is
n n

p(X|z) = n! ] p(zile) = n! [N (2 — 2; 0, %), (5)
i=1 i=1

where the n! term is added since the order of the measurements does not matter.

The ML estimate of the point from the measurements is then

x* = argmgxp(é\ﬂm):argngn(—logp(éﬂw)):
= argmin< —lo (n')+zn: —lo : + 2 — | =ar mini:||m‘—a:||2 (6)
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where a monotonous function (log) was applied and some constants were omitted. This simplification
obviously does not affect the result, and transforms the original problem of likelihood maximisation
into the sum-of-squared-errors (SSE) minimisation.

Note, that in this simple case the coordinate components x, y, . . . are independent. Hence the minimiser
of (6) is found in closed-form simply by laying the derivation according to each component of & equal
Z€ro,
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As expected, the ML estimate (in arbitrary number of dimensions) of the point under isotropic Gaus-
sian noise is simply the mean of the set X.

3 Model for Noisy Planar Line and ML Estimate

A normalised planar line I = (n',d) is given, where n is normal vector. There is also direction vector
u, such that v 1 n. These two vectors forms a basis of line coordinates. A point & (exactly) lying

on the line is created as
:ifi:[u n}[_tld], (8)

where t is a parameter along a line. Note, that the Euclidean coordinates of points are used. The
distribution of the parameter is chosen as

ti ~ p(ti) = N (tis e, o) - 9)
The measurement x; is the line point polluted by an isotropic Gaussian noise,

T =T;+ e, (10)
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The noise can be expressed in the line coordinates as

ei=[u n] U ] | pq q D — N30, 00) N5 0,00) (12

and the measurement expressed in the line coordinates is then

L t; + tf
mz—[u n} —d+de (13)
This leads to (using transformation of probability by linear transformation with unit Jacobian)
u’ ti T T
p(ill, t;) = pe nT [T | g =N(u z; —t;;0,0) N(n z; +d;0,0c). (14)

d;
Here the term d; = n ' x; + d represents the orthogonal distance of the point ; to the line .

Now the probability p(x;|l) is derived from the joint p.d.f. p(x;,t;|l) by marginalisation over ¢;.
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(The last step with fruitful help of Maple solver.)

Now the variance o; is chosen much larger than the size of image, where the points are observed, the
mean fi; is chosen e.g. zero (assuming that origin is in the image centre). Then the exponent is close
to zero, and the probability is approximately

p(xi|l) = y N (ds; 0,0¢), (16)

where y is some constant.

Again, the measurements are assumed to be independent, so the overall conditional probability of the
measurements is

n n

p(X[1) = n! [T p(ai|l) = n!y" [T N (di; 0, 00) . (17)
i=1 i=1

Finally, log is applied and unnecessary constants are omitted to form a log-likelihood to minimise.
The ML estimate of the line from the measurements is then

I* = arg mlaxp(?(\l) = argmlin(—logp(Xﬂ)) =

= in{ — log(nly" —log ———= 4 | b = iny d. 18
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Again, the original problem of likelihood maximisation is transformed into the sum-of-squared-errors
(SSE) minimisation. There is no closed form solution of (18), some numerical approach must be used.

4 Model for Noisy Planar Line Points with Outliers.

The process that creates set of points for a given line [ is modelled by following three random processes
that participates on generating each planar point x;.

1. Label generator. A label L; € {I, O} determining if a point is inlier or outlier is randomly drawn.

Li NPL(Li), pL(Lz' :I) :CE(COHSt), pL(Li :O) =1—-«

2. Inlier generator. If L; = I, a point location x; belonging to the line is generated as described in
Section 3.

x; ~ p(xi|l)

3. Outlier generator. If L; = O, an outlier (not dependent on the line) is drawn from uniform
distribution, assuming finite image of area 1/(.

x; ~ po(x;) = [(const.)

This leads the robust joint probability of point locations and labels, given the line, to be

pr(x;, Li|l) = { ((llpﬁaz‘)l)ﬁ ii iz ZIO 1)



The resulting robust probability pr(x;|l) is obtained by marginalisation (over all values of L;) as

pr(zill) = > pr(zi, Lil) = ap(zl) + (1 —a) 8. (20)
L;e{1,0}

The points are assumed to be independent, so using (16) the overall robust probability of measurements
is

pr(X|l) = n!HpR(a:iH):n!H(ap(a:i|l)+(1—a)ﬁ):
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where c1, co are some constants. Again, cost function from minus log-likelihood is constructed prior
to optimisation
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Here the constant co was replaced by a threshold 6. The cost function (robust penalty) C'1 is analysed
in the next section.

4.1 Robust Penalty

The previous section reveals a typical property of the robust model fitting problem under Gaussian
noise: the error (d; in the case of line fitting) is modelled using a mixture of normal and constant
probability density. The mixture p.d.f and its negative logarithm is

p(d) = aN(dis0,0.) + (1= ), —log (p(d:)) = ~log ( Tt (1 a)ﬂ) (23)

where « is a mixing coefficients. Example is in Figure 1.

There is an important value of d; on the intersection of both densities (i.e. the probability of both
processes is the same), denoted as a threshold 6.

a =5 (1-a)p
\/me i=1-a)f = 6= \/— log (a 27ra§) 202 (24)

Usually, the threshold is used to parametrise the mixture, and the Gaussian variance o, is assumed
approx o, € (0.16,0.50) (the variance affects only the curvature of the penalty function near the
threshold). Then the robust penalty function after removing some constants is

-4
Cy1(d;) = —202%log (e 20 4 62"3) . (25)
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Fig. 1: Mixture of a Gaussian and a constant probability density. (a) Probability density function and (b) its
negative logarithm.
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Fig. 2: Approximation of a robust penalty. (a) penalty function C; (26), (b) likelihood function L; (28).

This function can be approximated by two segments, one quadratic and one constant,

BEET
Cl(dz)”{ 62 if|d] >0 - (26)

The original problem is then solved by a numeric minimisation of Y C1(d;). Alternatively, the negative
of Ci(d;) can be used for maximisation, i.e. (with a constant shift that do not affect optimisation),

Cy(dy)
Li(d;)=1- 0z (27)
which is then approximated as
1— %% if |d| < 6
Ly(d;) ~ 9 i 28
1(di) {0 if |d;| > 0 (28)

Both approximations are demonstrated in Figure 2. Then the original problem is solved by a numeric
maximisation of Y L;(d;).



