3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. October 26, 2021

Open Informatics Master's Course

► Three-Point Exterior Orientation Problem (P3P)

<u>Calibrated</u> camera rotation and translation from <u>Perspective images of 3</u> reference <u>Points</u>. **Problem:** Given **K** and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find **R**, **C** by solving

 $\lambda_i \underline{\mathbf{m}}_i = \mathbf{K} \mathbf{R} (\mathbf{X}_i - \mathbf{C}), \quad i = 1, 2, 3 \quad \mathbf{X}_i \text{ Cartesian}$

1. Transform $\underline{\mathbf{v}}_i \stackrel{\text{def}}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_i$. Then

$$\lambda_i \underline{\mathbf{v}}_i = \mathbf{R} \left(\mathbf{X}_i - \mathbf{C} \right). \tag{10}$$

2. If there was no rotation in (10), the situation would look like this

- 3. and we could shoot 3 lines from the given points \mathbf{X}_i in given directions $\underline{\mathbf{v}}_i$ to get \mathbf{C}
- 4. given **C** we solve (10) for λ_i , **R**

►P3P cont'd

If there is rotation ${\bf R}$

1. Eliminate ${f R}$ by taking

rotation preserves length: $\|\mathbf{R}\mathbf{x}\| = \|\mathbf{x}\|$

$$|\lambda_i| \cdot ||\mathbf{v}_i|| = ||\mathbf{X}_i - \mathbf{C}|| \stackrel{\text{def}}{=} \mathbf{z}_i$$
 (11)

 Consider only angles among v_i and apply Cosine Law per triangle (C, X_i, X_j) i, j = 1, 2, 3, i ≠ j

$$d_{ij}^2 = z_i^2 + z_j^2 - 2 \, z_i \, z_j \, c_{ij}$$

$$z_i = \|\mathbf{X}_i - \mathbf{C}\|, \ d_{ij} = \|\mathbf{X}_j - \mathbf{X}_i\|, \ c_{ij} = \cos(\angle \mathbf{v}_i \, \mathbf{v}_j)$$

- 4. Solve the system of 3 quadratic eqs in 3 unknowns z_i [Fischler & Bolles, 1981] there may be no real root; there are up to 4 solutions that cannot be ignored (verify on additional points)
- Compute C by trilateration (3-sphere intersection) from X_i and z_i; then λ_i from (11)
- 6. Compute R from (10) we will solve this problem next \rightarrow 70

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)

Degenerate (Critical) Configurations for Exterior Orientation

no solution

1. C cocyclic with (X_1, X_2, X_3) camera sees points on a line

unstable solution

• center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i

<u>unstable</u>: a small change of X_i results in a large change of C can be detected by error propagation

degenerate

 camera C is coplanar with points (X1, X2, X3) but is not on the circumscribed circle of (X1, X2, X3)

camera sees points on a line

• additional critical configurations depend on the quadratic equations solver

[Haralick et al. IJCV 1994]

problem	given	unknown	slide
camera resection	6 world–img correspondences $\left\{ (X_i, m_i) ight\}_{i=1}^6$	Р	→62
exterior orientation	\mathbf{K} , 3 world–img correspondences $\left\{ \left(X_{i},m_{i} ight) ight\} _{i=1}^{3}$	R , C	→66
relative orientation	3 world-world correspondences $\left\{ \left(X_{i},Y_{i} ight) ight\} _{i=1}^{3}$	R , t	→70

- camera resection and exterior orientation are similar problems in a sense:
 - we do resectioning when our camera is uncalibrated
 - we do orientation when our camera is calibrated
- relative orientation involves no camera (see next) it is a recurring problem in 3D vision
- more problems to come

► The Relative Orientation Problem

Problem: Given point triples (X_1, X_2, X_3) and (Y_1, Y_2, Y_3) in a general position in \mathbb{R}^3 such that the correspondence $X_i \leftrightarrow Y_i$ is known, determine the relative orientation (\mathbb{R}, \mathbf{t}) that maps \mathbf{X}_i to \mathbf{Y}_i , i.e.

 $\mathbf{Y}_i = \mathbf{R}\mathbf{X}_i + \mathbf{t}, \quad i = 1, 2, 3.$

Applies to:

- 3D scanners
- · merging partial reconstructions from different viewpoints
- generalization of the last step of P3P

Obs: Let the centroid be $\bar{\mathbf{X}} = \frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\bar{\mathbf{Y}}$. Then

$$\bar{\mathbf{Y}} = \mathbf{R}\bar{\mathbf{X}} + \mathbf{t}$$

Therefore

$$\mathbf{Z}_i \stackrel{\text{def}}{=} (\mathbf{Y}_i - \bar{\mathbf{Y}}) = \mathbf{R}(\mathbf{X}_i - \bar{\mathbf{X}}) \stackrel{\text{def}}{=} \mathbf{R} \mathbf{W}_i$$

If all dot products are equal, $\mathbf{Z}_i^{ op} \mathbf{Z}_j = \mathbf{W}_i^{ op} \mathbf{W}_j$ for i, j = 1, 2, 3, we have

$$\mathbf{R}^* = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 & \mathbf{W}_3 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{Z}_1 & \mathbf{Z}_2 & \mathbf{Z}_3 \end{bmatrix}$$

Poor man's solver:

- normalize \mathbf{W}_i , \mathbf{Z}_i to unit length and then use the above formula
- but this is equivalent to a non-optimal objective it ignores er

it ignores errors in vector lengths

An Optimal Algorithm for Relative Orientation

We setup a minimization problem

$$\mathbf{R}^* = \arg\min_{\mathbf{R}} \sum_{i=1}^3 \|\mathbf{Z}_i - \mathbf{R}\mathbf{W}_i\|^2 \quad \text{s.t.} \quad \mathbf{R}^\top \mathbf{R} = \mathbf{I}, \quad \det \mathbf{R} = 1$$
$$\arg\min_{\mathbf{R}} \sum_i \|\mathbf{Z}_i - \mathbf{R}\mathbf{W}_i\|^2 = \arg\min_{\mathbf{R}} \sum_i \left(\|\mathbf{Z}_i\|^2 - 2\mathbf{Z}_i^\top \mathbf{R}\mathbf{W}_i + \|\mathbf{W}_i\|^2\right) = \cdots$$
$$\cdots = \arg\max_{\mathbf{R}} \sum_i \mathbf{Z}_i^\top \mathbf{R}\mathbf{W}_i$$

Obs 1: Let $A : B = \sum_{i,j} a_{ij} b_{ij}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$\mathbf{A} : \mathbf{B} = \mathbf{B} : \mathbf{A} = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{B})$$

Obs 2: (cyclic property for matrix trace)

$$\operatorname{tr}(\mathbf{ABC}) = \operatorname{tr}(\mathbf{CAB})$$

Obs 3: (\mathbf{Z}_i , \mathbf{W}_i are vectors)

$$\mathbf{Z}_i^{\top} \mathbf{R} \mathbf{W}_i = \operatorname{tr}(\mathbf{Z}_i^{\top} \mathbf{R} \mathbf{W}_i) \stackrel{\text{O2}}{=} \operatorname{tr}(\mathbf{W}_i \mathbf{Z}_i^{\top} \mathbf{R}) \stackrel{\text{O1}}{=} (\mathbf{Z}_i \mathbf{W}_i^{\top}) : \mathbf{R} = \mathbf{R} : (\mathbf{Z}_i \mathbf{W}_i^{\top})$$

Let there be SVD of

$$\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top} \stackrel{\text{def}}{=} \mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{V}^{\top}$$

Then

$$\mathbf{R}: \mathbf{M} = \mathbf{R}: (\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) \stackrel{01}{=} \operatorname{tr}(\mathbf{R}^{\top}\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) \stackrel{02}{=} \operatorname{tr}(\mathbf{V}^{\top}\mathbf{R}^{\top}\mathbf{U}\mathbf{D}) \stackrel{01}{=} (\mathbf{U}^{\top}\mathbf{R}\mathbf{V}): \mathbf{D}$$

3D Computer Vision: III. Computing with a Single Camera (p. 71/190) つへへ R. Šára, CMP; rev. 26-Oct-2021 📴

cont'd: The Algorithm

We are solving

$$\mathbf{R}^* = \arg \max_{\mathbf{R}} \sum_i \mathbf{Z}_i^\top \mathbf{R} \mathbf{W}_i = \arg \max_{\mathbf{R}} \left(\mathbf{U}^\top \mathbf{R} \mathbf{V} \right) : \mathbf{D}$$

A particular solution is found as follows:

- $\mathbf{U}^{\top}\mathbf{R}\mathbf{V}$ must be (1) orthogonal, and most similar to (2) diagonal, (3) positive definite
- Since U, V are orthogonal matrices then the solution to the problem is among $\mathbf{R}^* = \mathbf{U} \mathbf{S} \mathbf{V}^\top$, where S is diagonal and orthogonal, i.e. one of

 $\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)$

- + $\mathbf{U}^{\top}\mathbf{V}$ is not necessarily positive definite
- We choose ${\bf S}$ so that $({\bf R}^*)^\top {\bf R}^* = {\bf I}$

Alg:

- 1. Compute matrix $\mathbf{M} = \sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}$.
- 2. Compute SVD $\mathbf{M} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
- 3. Compute all $\mathbf{R}_k = \mathbf{U}\mathbf{S}_k\mathbf{V}^{\top}$ that give $\mathbf{R}_k^{\top}\mathbf{R}_k = \mathbf{I}$.
- 4. Compute $\mathbf{t}_k = \bar{\mathbf{Y}} \mathbf{R}_k \bar{\mathbf{X}}$.
- The algorithm can be used for more than 3 points
- Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
- Can be used for the last step of the exterior orientation (P3P) problem ${\rightarrow}66$

Module IV

Computing with a Camera Pair

- Ocamera Motions Inducing Epipolar Geometry
- Estimating Fundamental Matrix from 7 Correspondences
- Estimating Essential Matrix from 5 Correspondences
- Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

- [1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
- [2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. *Nature*, 293 (5828):133–135, 1981.

► Geometric Model of a Camera Stereo Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Description

• <u>baseline</u> b joins projection centers C_1 , C_2

$$\mathbf{b} = \mathbf{C}_2 - \mathbf{C}_1$$

• <u>epipole</u> $e_i \in \pi_i$ is the image of C_j :

$$\underline{\mathbf{e}}_1 \simeq \mathbf{P}_1 \underline{\mathbf{C}}_2, \quad \underline{\mathbf{e}}_2 \simeq \mathbf{P}_2 \underline{\mathbf{C}}_1$$

• $l_i \in \pi_i$ is the image of <u>epipolar plane</u>

$$\varepsilon = (C_2, X, C_1)$$

• l_j is the <u>epipolar line</u> ('epipolar') in image π_j induced by m_i in image π_i

Epipolar constraint:

corresponding d_2 , b, d_1 are coplanar

a necessary condition \rightarrow 87

 $\mathbf{P}_{i} = \begin{bmatrix} \mathbf{Q}_{i} & \mathbf{q}_{i} \end{bmatrix} = \mathbf{K}_{i} \begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \end{bmatrix} = \mathbf{K}_{i} \mathbf{R}_{i} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix} \quad i = 1, 2 \qquad \rightarrow \mathbf{31}$

Epipolar Geometry Example: Forward Motion

- red: correspondences
- green: epipolar line pairs per correspondence

How high was the camera above the floor?

Cross Products and Maps by Skew-Symmetric 3×3 Matrices

• There is an equivalence $\mathbf{b} \times \mathbf{m} = [\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$ is a 3×3 skew-symmetric matrix

$$\begin{bmatrix} \mathbf{b} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -b_3 & b_2 \\ b_3 & 0 & -b_1 \\ -b_2 & b_1 & 0 \end{bmatrix}, \qquad \text{assuming} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

Some properties

- 1. $[\mathbf{b}]_{\times}^{\top} = -[\mathbf{b}]_{\times}$ the general antisymmetry property
- 2. A is skew-symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = 0$ for all \mathbf{x}

skew-sym mtx generalizes cross products

3. $[\mathbf{b}]_{\times}^{3} = -\|\mathbf{b}\|^{2} \cdot [\mathbf{b}]_{\times}$ 4. $\|[\mathbf{b}]_{\times}\|_{F} = \sqrt{2} \|\mathbf{b}\|$ Frobenius norm $(\|\mathbf{A}\|_{F} = \sqrt{\operatorname{tr}(\mathbf{A}^{\top}\mathbf{A})} = \sqrt{\sum_{i,j} |a_{ij}|^{2}})$ 5. $\operatorname{rank}[\mathbf{b}]_{\times} = 2$ iff $\|\mathbf{b}\| > 0$ check minors of $[\mathbf{b}]_{\times}$

$$\mathbf{6.} \ \mathbf{[b]}_{\times}\mathbf{b} = \mathbf{0}$$

- 7. eigenvalues of $\left[\mathbf{b}\right]_{\times}$ are $(0,\lambda,-\lambda)$
- 8. for any 3×3 regular \mathbf{B} : $\mathbf{B}^{\top}[\mathbf{B}\mathbf{z}]_{\times}\mathbf{B} = \det \mathbf{B}[\mathbf{z}]_{\times}$ follows from the factoring on $\rightarrow 39$
- 9. in particular: if $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$ then $[\mathbf{R}\mathbf{b}]_{\times} = \mathbf{R}[\mathbf{b}]_{\times}\mathbf{R}^{\top}$
- note that if \mathbf{R}_b is rotation about \mathbf{b} then $\mathbf{R}_b\mathbf{b} = \mathbf{b}$
- note $[\mathbf{b}]_{\times}$ is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx

Thank You

