3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. October 26, 2021

Open Informatics Master's Course

-Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of $\underline{3}$ reference Points. Problem: Given \mathbf{K} and three corresponding pairs $\left\{\left(m_{i}, X_{i}\right)\right\}_{i=1}^{3}$, find \mathbf{R}, \mathbf{C} by solving

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{K R}\left(\mathbf{X}_{i}-\mathbf{C}\right), \quad i=1,2,3 \quad \mathbf{X}_{i} \text { Cartesian }
$$

1. Transform $\underline{\mathbf{v}}_{i} \stackrel{\text { def }}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_{i}$. Then

$$
\begin{equation*}
\lambda_{i} \underline{\mathbf{v}}_{i}=\mathbf{R}\left(\mathbf{X}_{i}-\mathbf{C}\right) \tag{10}
\end{equation*}
$$

2. If there was no rotation in (10), the situation would look like this

3. and we could shoot 3 lines from the given points \mathbf{X}_{i} in given directions $\underline{\mathbf{v}}_{i}$ to get \mathbf{C}
4. given \mathbf{C} we solve (10) for λ_{i}, \mathbf{R}

－P3P cont＇d

If there is rotation \mathbf{R}

1．Eliminate \mathbf{R} by taking rotation preserves length：$\|\mathbf{R x}\|=\|\mathbf{x}\|$

$$
\begin{equation*}
\left|\lambda_{i}\right| \cdot\left\|\underline{\mathbf{v}}_{i}\right\|=\left\|\mathbf{X}_{i}-\mathbf{C}\right\| \stackrel{\text { def }}{=} z_{i} \tag{11}
\end{equation*}
$$

2．Consider only angles among $\underline{\mathbf{v}}_{i}$ and apply Cosine Law per triangle $\left(\mathbf{C}, \mathbf{X}_{i}, \mathbf{X}_{j}\right) i, j=1,2,3, i \neq j$

$$
\begin{gathered}
d_{i j}^{2}=z_{i}^{2}+z_{j}^{2}-2 z_{i} z_{j} c_{i j} \\
z_{i}=\left\|\mathbf{X}_{i}-\mathbf{C}\right\|, \quad d_{i j}=\left\|\mathbf{X}_{j}-\mathbf{X}_{i}\right\|, \quad c_{i j}=\cos \left(\angle \underline{\mathbf{v}}_{i} \underline{\mathbf{v}}_{j}\right)
\end{gathered}
$$

4．Solve the system of 3 quadratic eqs in 3 unknowns z_{i}
［Fischler \＆Bolles，1981］
 there may be no real root；there are up to 4 solutions that cannot be ignored
（verify on additional points）
5．Compute \mathbf{C} by trilateration（3－sphere intersection）from \mathbf{X}_{i} and z_{i} ；then λ_{i} from（11）
6．Compute \mathbf{R} from（10）we will solve this problem next $\rightarrow 70$
Similar problems（P4P with unknown f ）at http：／／aag．ciirc．cvut．cz／minimal／（papers，code）

Degenerate (Critical) Configurations for Exterior Orientation

no solution

1. C cocyclic with $\left(X_{1}, X_{2}, X_{3}\right)$ camera sees points on a line

unstable solution

- center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_{i}
unstable: a small change of X_{i} results in a large change of C can be detected by error propagation
degenerate
- camera C is coplanar with points $\left(X_{1}, X_{2}, X_{3}\right)$ but is not on the circumscribed circle of $\left(X_{1}, X_{2}, X_{3}\right)$
camera sees points on a line
- additional critical configurations depend on the quadratic equations solver
[Haralick et al. IJCV 1994]

Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	$\rightarrow 62$
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	$\rightarrow 66$
relative orientation	3 world-world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{t}	$\rightarrow 70$

- camera resection and exterior orientation are similar problems in a sense:
- we do resectioning when our camera is uncalibrated
- we do orientation when our camera is calibrated
- relative orientation involves no camera (see next) it is a recurring problem in 3D vision
- more problems to come

-The Relative Orientation Problem

Problem: Given point triples $\left(X_{1}, X_{2}, X_{3}\right)$ and $\left(Y_{1}, Y_{2}, Y_{3}\right)$ in a general position in \mathbf{R}^{3} such that the correspondence $X_{i} \leftrightarrow Y_{i}$ is known, determine the relative orientation (\mathbf{R}, \mathbf{t}) that maps \mathbf{X}_{i} to \mathbf{Y}_{i}, i.e.

$$
\mathbf{Y}_{i}=\mathbf{R} \mathbf{X}_{i}+\mathbf{t}, \quad i=1,2,3
$$

Applies to:

- 3D scanners
- merging partial reconstructions from different viewpoints
- generalization of the last step of P3P

Obs: Let the centroid be $\overline{\mathbf{X}}=\frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\overline{\mathbf{Y}}$. Then

$$
\overline{\mathbf{Y}}=\mathbf{R} \overline{\mathbf{X}}+\mathbf{t}
$$

Therefore

$$
\mathbf{Z}_{i} \stackrel{\text { def }}{=}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)=\mathbf{R}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \stackrel{\text { def }}{=} \mathbf{R} \mathbf{W}_{i}
$$

If all dot products are equal, $\mathbf{Z}_{i}^{\top} \mathbf{Z}_{j}=\mathbf{W}_{i}^{\top} \mathbf{W}_{j}$ for $i, j=1,2,3$, we have

$$
\mathbf{R}^{*}=\left[\begin{array}{lll}
\mathbf{W}_{1} & \mathbf{W}_{2} & \mathbf{W}_{3}
\end{array}\right]^{-1}\left[\begin{array}{lll}
\mathbf{Z}_{1} & \mathbf{Z}_{2} & \mathbf{Z}_{3}
\end{array}\right]
$$

Poor man's solver:

- normalize $\mathbf{W}_{i}, \mathbf{Z}_{i}$ to unit length and then use the above formula
- but this is equivalent to a non-optimal objective
it ignores errors in vector lengths

An Optimal Algorithm for Relative Orientation

We setup a minimization problem

$$
\begin{array}{r}
\mathbf{R}^{*}=\arg \min _{\mathbf{R}} \sum_{i=1}^{3}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2} \quad \text { s.t. } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \quad \operatorname{det} \mathbf{R}=1 \\
\arg \min _{\mathbf{R}} \sum_{i}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2}=\arg \min _{\mathbf{R}} \sum_{i}\left(\left\|\mathbf{Z}_{i}\right\|^{2}-2 \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}+\left\|\mathbf{W}_{i}\right\|^{2}\right)=\cdots \\
\cdots=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}
\end{array}
$$

Obs 1: Let $\mathbf{A}: \mathbf{B}=\sum_{i, j} a_{i j} b_{i j}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$
\mathbf{A}: \mathbf{B}=\mathbf{B}: \mathbf{A}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{B}\right)
$$

Obs 2: (cyclic property for matrix trace)

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{C A B})
$$

Obs 3: ($\mathbf{Z}_{i}, \mathbf{W}_{i}$ are vectors)

$$
\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\operatorname{tr}\left(\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}\right) \stackrel{\mathrm{O2}}{=} \operatorname{tr}\left(\mathbf{W}_{i} \mathbf{Z}_{i}^{\top} \mathbf{R}\right) \stackrel{\text { O1 }}{=}\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right): \mathbf{R}=\mathbf{R}:\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right)
$$

Let there be SVD of

$$
\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top} \stackrel{\text { def }}{=} \mathbf{M}=\mathbf{U D} \mathbf{V}^{\top}
$$

Then

$$
\mathbf{R}: \mathbf{M}=\mathbf{R}:\left(\mathbf{U D} \mathbf{V}^{\top}\right) \stackrel{\mathrm{O} 1}{=} \operatorname{tr}\left(\mathbf{R}^{\top} \mathbf{U D} \mathbf{V}^{\top}\right) \stackrel{\mathrm{O2}}{=} \operatorname{tr}\left(\mathbf{V}^{\top} \mathbf{R}^{\top} \mathbf{U D}\right) \stackrel{\stackrel{\mathrm{O} 1}{=}\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D} . .}{ }
$$

cont'd: The Algorithm

We are solving

$$
\mathbf{R}^{*}=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\arg \max _{\mathbf{R}}\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

A particular solution is found as follows:

- $\mathbf{U}^{\top} \mathbf{R V}$ must be (1) orthogonal, and most similar to (2) diagonal, (3) positive definite
- Since U, V are orthogonal matrices then the solution to the problem is among $\mathbf{R}^{*}=\mathbf{U S V}^{\top}$, where \mathbf{S} is diagonal and orthogonal, i.e. one of

$$
\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)
$$

- $\mathbf{U}^{\top} \mathbf{V}$ is not necessarily positive definite
- We choose \mathbf{S} so that $\left(\mathbf{R}^{*}\right)^{\top} \mathbf{R}^{*}=\mathbf{I}$

Alg:

1. Compute matrix $\mathbf{M}=\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}$.
2. Compute SVD $\mathbf{M}=\mathbf{U D V}{ }^{\top}$.
3. Compute all $\mathbf{R}_{k}=\mathbf{U} \mathbf{S}_{k} \mathbf{V}^{\top}$ that give $\mathbf{R}_{k}^{\top} \mathbf{R}_{k}=\mathbf{I}$.
4. Compute $\mathbf{t}_{k}=\overline{\mathbf{Y}}-\mathbf{R}_{k} \overline{\mathbf{X}}$.

- The algorithm can be used for more than 3 points
- Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
- Can be used for the last step of the exterior orientation (P3P) problem $\rightarrow 66$

Module IV

Computing with a Camera Pair

4.1) Camera Motions Inducing Epipolar Geometry
4.2 Estimating Fundamental Matrix from 7 Correspondences
4.3 Estimating Essential Matrix from 5 Correspondences

444 Triangulation: 3D Point Position from a Pair of Corresponding Points

Abstract

covered by

[1] [H\&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633
additional references
宔
H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293 (5828):133-135, 1981.

-Geometric Model of a Camera Stereo Pair

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Description

- baseline b joins projection centers C_{1}, C_{2}

$$
\mathbf{b}=\mathbf{C}_{2}-\mathbf{C}_{1}
$$

- epipole $e_{i} \in \pi_{i}$ is the image of C_{j} :

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{P}_{1} \underline{\mathbf{C}}_{2}, \quad \underline{\mathbf{e}}_{2} \simeq \mathbf{P}_{2} \underline{\mathbf{C}}_{1}
$$

- $l_{i} \in \pi_{i}$ is the image of epipolar plane

$$
\varepsilon=\left(C_{2}, X, C_{1}\right)
$$

- l_{j} is the epipolar line ('epipolar') in image π_{j} induced by m_{i} in image π_{i}

Epipolar constraint: corresponding d_{2}, b, d_{1} are coplanar

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right]=\mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right] \quad i=1,2 \quad \rightarrow 31
$$

a necessary condition $\rightarrow 87$

Epipolar Geometry Example: Forward Motion

image 1

- red: correspondences
- green: epipolar line pairs per correspondence

image 2
click on the image to see their IDs same ID in both images

How high was the camera above the floor?

Cross Products and Maps by Skew-Symmetric 3×3 Matrices

- There is an equivalence $\mathbf{b} \times \mathbf{m}=[\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$is a 3×3 skew-symmetric matrix

$$
[\mathbf{b}]_{\times}=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right], \quad \text { assuming } \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Some properties

1. $[\mathbf{b}]_{\times}^{\top}=-[\mathbf{b}]_{\times}$
the general antisymmetry property
2. \mathbf{A} is skew-symmetric iff $\mathbf{x}^{\top} \mathbf{A x}=0$ for all $\mathbf{x} \quad$ skew-sym mtx generalizes cross products
3. $[\mathbf{b}]_{\times}^{3}=-\|\mathbf{b}\|^{2} \cdot[\mathbf{b}]_{\times}$
4. $\left\|[\mathbf{b}]_{\times}\right\|_{F}=\sqrt{2}\|\mathbf{b}\|$

Frobenius norm $\left(\|\mathbf{A}\|_{F}=\sqrt{\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{A}\right)}=\sqrt{\left.\sum_{i, j}\left|a_{i j}\right|^{2}\right)}\right.$
5. $\operatorname{rank}[\mathbf{b}]_{\times}=2$ iff $\|\mathbf{b}\|>0$ check minors of $[\mathbf{b}]_{\times}$
6. $[\mathbf{b}]_{\times} \mathbf{b}=\mathbf{0}$
7. eigenvalues of $[\mathbf{b}]_{\times}$are $(0, \lambda,-\lambda)$
8. for any 3×3 regular $\mathbf{B}: \quad \mathbf{B}^{\top}[\mathbf{B z}]_{\times} \mathbf{B}=\operatorname{det} \mathbf{B}[\mathbf{z}]_{\times}$follows from the factoring on $\rightarrow 39$
9. in particular: if $\mathbf{R} \mathbf{R}^{\top}=\mathbf{I}$ then $[\mathbf{R b}]_{\times}=\mathbf{R}[\mathbf{b}]_{\times} \mathbf{R}^{\top}$

- note that if \mathbf{R}_{b} is rotation about \mathbf{b} then $\mathbf{R}_{b} \mathbf{b}=\mathbf{b}$
- note $[\mathbf{b}]_{\times}$is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx

Thank You

