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» Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.
3 . .
find R, C by solving

i=1"'

Problem: Given K and three corresponding pair;{(mi, Xi)}
Am; = KR (X; — C), 1=1,2,3 X,; Cartesian
1. Transform v; def K~ 'm;. Then

)\iYi =R (Xz - C)- (10)

2. If there was no rotation in (10), the situation would look like this

3. and we could shoot 3 lines from the given points X; in given directions v; to get C
4. given C we solve (10) for \;, R
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»P3P cont’d
If there is rotation R
1. Eliminate R by taking rotation preserves length: |[Rx| = [|x||
def
Al Dl = 1% — € % =, (11)

2. Consider only angles among v; and apply Cosine Law per
triangle (C,X;,X;) 4,5 =1,2,3, i #j

2 2, .2
di; = 2z + 2 — 22 zj cij,

zi = |Xi = C|l, dij = [|1Xs — Xy, cij = cos(Lv; vy)

4. Solve the system of 3 quadratic eqs in 3 unknowns z;
[Fischler & Bolles, 1981] ?
there may be no real root; there are up to 4 solutions that cannot
be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from X;
and z;; then \; from (11)

6. Compute R from (10) we will solve this problem next —70

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)
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http://aag.ciirc.cvut.cz/minimal/

Degenerate (Critical) Configurations for Exterior Orientation

X3
- ( .

-9 T T no solution
l\ ]
)(:1. ----- "'X2 1. C cocyclic with (X1, X2, X3)  camera sees points on a line

unstable solution
( e center of projection C' located on the orthogonal circular

‘,—— O“\‘ cylinder with base circumscribing the three points X;
! Ik i E unstable: a small change of X results in a large change of '
. X i can be detected by error propagation
HPT SRR .
v Y degenerate

ce- .- -’ . . . .
X X5 e camera (' is coplanar with points (X1, X2, X3) but is not

on the circumscribed circle of (X1, X2, X3)
camera sees points on a line

e additional critical configurations depend on the quadratic equations solver

[Haralick et al. [JCV 1994]
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»Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown | slide
camera resection | 6 world—img correspondences {(Xi, mi)}?il P —62
exterior orientation | K, 3 world-img correspondences { (X, mi)}f:1 R, C —66
relative orientation | 3 world-world correspondences {(Xi, K)}?:l R, t —70

e camera resection and exterior orientation are similar problems in a sense:

e we do resectioning when our camera is uncalibrated
e we do orientation when our camera is calibrated

e relative orientation involves no camera (see next) it is a recurring problem in 3D vision

e more problems to come
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» The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2,Y3) in a general position in R?
such that the correspondence X; < Y; is known, determine the relative orientation (R, t)
that maps X; to Y3, i.e.
Y; =RX;+t, i=1,2,3.
Applies to:
e 3D scanners
® merging partial reconstructions from different viewpoints

® generalization of the last step of P3P

Obs: Let the centroid be X = %ZZ X; and analogically for Y. Then
Y =RX +t.

Therefore

Z; ¥ (v, - ¥V)=R(X; - X) ¥ rwW;

If all dot products are equal, ZZTZJ- = WZTWJ‘ for i,5 =1,2,3, we have
* -1
R*=[W1 Wy W3] " [Z1 Zy Z3]
Poor man’s solver:
e normalize W3, Z; to unit length and then use the above formula

® but this is equivalent to a non-optimal objective it ignores errors in vector lengths
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An Optimal Algorithm for Relative Orientation

We setup a minimization problem

3
R'=argminy [Z; —RW,[> st. R'R=I detR=1
R
=1
argmin Y [|Z; — RW;|* = argmin 3 (|1Zi[* — 227 RW, + [Wi[]*) = - -
K 1 T
s = argml%xzzi RW;
1

Obs 1: Let A: B =3", s ai;b;; be the dot-product (Frobenius inner product) over real matrices.
Then
A:B=B:A=tr(ATB)
Obs 2: (cyclic property for matrix trace)
tr(ABC) = tr(CAB)
Obs 3: (Z;, W; are vectors)

Z] RW,; = tr(Z] RW;) £ tr(W,Z] R) £ (Z;W]) : R =R : (Z;W )

Let there be SVD of
S z;w] €M=UDV'
7

Then
R:M=R:(UDV) Zu®RTUDV") Zu(vVTRTUD) 2 (UTRV): D
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cont'd: The Algorithm

We are solving
* T ‘ T .
R = arg max E Z; Rwl—argml%x(U RV) :D

A particular solution is found as follows:
e UTRV must be (1) orthogonal, and most similar to (2) diagonal, (3) positive definite
e Since U, V are orthogonal matrices then the solution to the problem is among
R* = USV", where S is diagonal and orthogonal, i.e. one of

+diag(1,1,1), +diag(l,—-1,-1), =+diag(-1,1,—1), =+diag(—1,—1,1)

e UV is not necessarily positive definite
e We choose S so that (R*)'R* =1

Alg:
1. Compute matrix M =3, Z; W, .
2. Compute SVD M = UDV'.
3. Compute all Ry = US, V" that give R Ry =1.
4. Compute t, =Y — RpX.

e The algorithm can be used for more than 3 points
e Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
e Can be used for the last step of the exterior orientation (P3P) problem —66
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Module [V

Computing with a Camera Pair

@® Camera Motions Inducing Epipolar Geometry

@®Estimating Fundamental Matrix from 7 Correspondences
@®Estimating Essential Matrix from 5 Correspondences

@ Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by
[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

additional references

@ H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293
(5828):133-135, 1981
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»Geometric Model of a Camera Stereo Pair

Epipolar geometry:

e brings constraints necessary for inter-image matching

e its parametric form encapsulates information about the relative pose of two cameras
Description

® baseline b joins projection centers Cy, Co

b=C;-C;
e epipole e; € m; is the image of Cj:
e1 ~P1Cs, e ~P2C
® |, € m; is the image of epipolar plane

e=(Cq,X,Ch)

o [; is the epipolar Ii_ne_(‘epipolar’) in image
two-camera setup 7 induced by m; in image m;

Epipolar constraint: corresponding d2, b, d1 are coplanar a necessary condition —87
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Epipolar Geometry Example: Forward Motion

image 1 image 2
e red: correspondences click on the image to see their IDs
e green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

o~
movement Il

2 1
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»Cross Products and Maps by Skew-Symmetric 3 x 3 Matrices

o There is an equivalence b x m = [b], m, where [b], is a 3 x 3 skew-symmetric matrix

0 —bs b b1
[b], = | b3 0 b1, assuming b = |b2
b2 b 0 b3
Some properties
1. [b]z = —[b], the general antisymmetry property
2. A is skew-symmetric iff x T Ax = 0 for all x skew-sym mtx generalizes cross products
3. [bJ, = —[Ibl|*- [b],
4 ||bl I, = V2| Frobenius norm (| Allr = \/tr(ATA) = /5, lai;[?)
5. rank [b], =2 iff ||b]| >0 check minors of [b],
6. [b],b=0
7. eigenvalues of [b], are (0, ), —\)
8. for any 3 x 3 regular B : BT[BZ]XB = detB [z],, follows from the factoring on —39
9. in particular: if RR" =T then [Rb], =R[b] R"

e note that if Ry is rotation about b then Ryb = b

e note [b], is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx
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Thank You
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