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IThree-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given K and three corresponding pairs
{

(mi, Xi)
}3
i=1

, find R, C by solving

λimi = KR (Xi −C), i = 1, 2, 3 Xi Cartesian

1. Transform vi
def
= K−1mi. Then

λivi = R (Xi −C). (10)

2. If there was no rotation in (10), the situation would look like this

X3X1 v2
X2z1 v1 v3z2

C
d12

3. and we could shoot 3 lines from the given points Xi in given directions vi to get C

4. given C we solve (10) for λi, R
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IP3P cont’d

If there is rotation R

1. Eliminate R by taking rotation preserves length: ‖Rx‖ = ‖x‖

|λi| · ‖vi‖ = ‖Xi −C‖ def
= zi (11)

2. Consider only angles among vi and apply Cosine Law per
triangle (C,Xi,Xj) i, j = 1, 2, 3, i 6= j

d2ij = z2i + z2j − 2 zi zj cij ,

zi = ‖Xi −C‖, dij = ‖Xj −Xi‖, cij = cos(∠vi vj)

4. Solve the system of 3 quadratic eqs in 3 unknowns zi
[Fischler & Bolles, 1981]

there may be no real root; there are up to 4 solutions that cannot

be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from Xi

and zi; then λi from (11)

6. Compute R from (10) we will solve this problem next →70

X3X1 v2
X2z1 v1 v3z2

C
d12

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)
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Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2C no solution

1. C cocyclic with (X1, X2, X3) camera sees points on a line

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular
cylinder with base circumscribing the three points Xi

unstable: a small change of Xi results in a large change of C
can be detected by error propagation

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not
on the circumscribed circle of (X1, X2, X3)

camera sees points on a line

• additional critical configurations depend on the quadratic equations solver

[Haralick et al. IJCV 1994]
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IPopulating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

camera resection 6 world–img correspondences
{

(Xi, mi)
}6
i=1

P →62

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3
i=1

R, C →66

relative orientation 3 world-world correspondences
{

(Xi, Yi)
}3
i=1

R, t →70

• camera resection and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• relative orientation involves no camera (see next) it is a recurring problem in 3D vision

• more problems to come

3D Computer Vision: III. Computing with a Single Camera (p. 69/190) R. Šára, CMP; rev. 26–Oct–2021



IThe Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2, Y3) in a general position in R3

such that the correspondence Xi ↔ Yi is known, determine the relative orientation (R, t)
that maps Xi to Yi, i.e.

Yi = RXi + t, i = 1, 2, 3 .

Applies to:

• 3D scanners

• merging partial reconstructions from different viewpoints

• generalization of the last step of P3P

Obs: Let the centroid be X̄ = 1
3

∑
i Xi and analogically for Ȳ. Then

Ȳ = RX̄ + t.

Therefore

Zi
def
= (Yi − Ȳ) = R(Xi − X̄)

def
= RWi

If all dot products are equal, Z>i Zj = W>
i Wj for i, j = 1, 2, 3, we have

R∗ =
[
W1 W2 W3

]−1 [
Z1 Z2 Z3

]
Poor man’s solver:

• normalize Wi, Zi to unit length and then use the above formula

• but this is equivalent to a non-optimal objective it ignores errors in vector lengths
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An Optimal Algorithm for Relative Orientation

We setup a minimization problem

R∗ = arg min
R

3∑
i=1

‖Zi −RWi‖2 s.t. R>R = I, detR = 1

arg min
R

∑
i

‖Zi −RWi‖2 = arg min
R

∑
i

(
‖Zi‖2 − 2Z>i RWi + ‖Wi‖2

)
= · · ·

· · · = arg max
R

∑
i

Z>i RWi

Obs 1: Let A : B =
∑
i,j aijbij be the dot-product (Frobenius inner product) over real matrices.

Then
A : B = B : A = tr(A>B)

Obs 2: (cyclic property for matrix trace)

tr(ABC) = tr(CAB)

Obs 3: (Zi, Wi are vectors)

Z>i RWi = tr(Z>i RWi)
O2
= tr(WiZ

>
i R)

O1
= (ZiW

>
i ) : R = R : (ZiW

>
i )

Let there be SVD of ∑
i

ZiW
>
i

def
= M = UDV>

Then

R : M = R : (UDV>)
O1
= tr(R>UDV>)

O2
= tr(V>R>UD)

O1
= (U>RV) : D
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cont’d: The Algorithm

We are solving

R∗ = arg max
R

∑
i

Z>i RWi = arg max
R

(
U>RV

)
: D

A particular solution is found as follows:
• U>RV must be (1) orthogonal, and most similar to (2) diagonal, (3) positive definite
• Since U, V are orthogonal matrices then the solution to the problem is among
R∗ = USV>, where S is diagonal and orthogonal, i.e. one of

±diag(1, 1, 1), ± diag(1,−1,−1), ±diag(−1, 1,−1), ± diag(−1,−1, 1)

• U>V is not necessarily positive definite
• We choose S so that (R∗)>R∗ = I

Alg:
1. Compute matrix M =

∑
i ZiW

>
i .

2. Compute SVD M = UDV>.
3. Compute all Rk = USkV

> that give R>kRk = I.
4. Compute tk = Ȳ −RkX̄.

• The algorithm can be used for more than 3 points

• Triple pairs can be pre-filtered based on motion invariants (lengths, angles)

• Can be used for the last step of the exterior orientation (P3P) problem →66
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Module IV

Computing with a Camera Pair

4.1 Camera Motions Inducing Epipolar Geometry

4.2 Estimating Fundamental Matrix from 7 Correspondences

4.3 Estimating Essential Matrix from 5 Correspondences

4.4 Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293

(5828):133–135, 1981.
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IGeometric Model of a Camera Stereo Pair

Epipolar geometry:

• brings constraints necessary for inter-image matching
• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1

e2e1m1
X

C2l1 m2C1 l2b
two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ' P1C2, e2 ' P2C1

• li ∈ πi is the image of epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line (‘epipolar’) in image
πj induced by mi in image πi

Epipolar constraint: corresponding d2, b, d1 are coplanar a necessary condition →87

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
= KiRi

[
I −Ci

]
i = 1, 2 →31
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Epipolar Geometry Example: Forward Motion
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image 1 image 2

• red: correspondences click on the image to see their IDs

• green: epipolar line pairs per correspondence same ID in both images

How high was the camera above the floor?

movement2 1 h=?
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ICross Products and Maps by Skew-Symmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 skew-symmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3


Some properties

1. [b]>× = −[b]× the general antisymmetry property

2. A is skew-symmetric iff x>Ax = 0 for all x skew-sym mtx generalizes cross products

3. [b]3× = −‖b‖2 · [b]×

4. ‖[b]×‖F =
√

2 ‖b‖ Frobenius norm (‖A‖F =
√

tr(A>A) =
√∑

i,j |aij |
2)

5. rank [b]× = 2 iff ‖b‖ > 0 check minors of [b]×

6. [b]×b = 0

7. eigenvalues of [b]× are (0, λ,−λ)

8. for any 3× 3 regular B : B>[Bz]×B = detB [z]× follows from the factoring on →39

9. in particular: if RR> = I then [Rb]× = R[b]×R
>

• note that if Rb is rotation about b then Rbb = b

• note [b]× is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx

3D Computer Vision: IV. Computing with a Camera Pair (p. 76/190) R. Šára, CMP; rev. 26–Oct–2021



Thank You



 1

 2 3
 4 5

 6

 7 8 910111213

1415
1617

18

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 26–Oct–2021
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