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Radim Šára Martin Matoušek
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I5-Point Algorithm for Relative Camera Orientation

Problem: Given {mi, m
′
i}5i=1 corresponding image points and calibration matrix K,

recover the camera motion R, t.

Obs:
1. E – homogeneous 3× 3 matrix; 9 numbers up to scale

2. R – 3 DOF, t – 2 DOF only, in total 5 DOF → we need 9− 1− 5 = 3 constraints on E

3. idea: E essential iff it has two equal singular values and the third is zero →81

This gives an equation system:

v>i Ev′i = 0 5 linear constraints (v ' K−1m)

detE = 0 1 cubic constraint

EE>E− 1

2
tr(EE>)E = 0 9 cubic constraints, 2 independent

~ P1; 1pt: verify this equation from E = UDV>, D = λ diag(1, 1, 0)

1. estimate E by SVD from v>i Ev′i = 0 by the null-space method 4D null space

2. this gives E ' xE1 + yE2 + zE3 + E4

3. at most 10 (complex) solutions for x, y, z from the cubic constraints

• when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views

or by chirality constraint (→83) unless all 3D points are closer to one camera

• 6-point problem for unknown f [Kukelova et al. BMVC 2008]

• resources at http://aag.ciirc.cvut.cz/minimal/
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IThe Triangulation Problem

Problem: Given cameras P1, P2 and a correspondence x↔ y compute a 3D point X
projecting to x and y

λ1 x = P1X , λ2 y = P2X , x =

u1

v1

1

 , y =

u2

v2

1

 , Pi =

(pi1)>

(pi2)>

(pi3)>


Linear triangulation method after eliminating λ1, λ2

u1 (p1
3)>X = (p1

1)>X, u2 (p2
3)>X = (p2

1)>X,

v1 (p1
3)>X = (p1

2)>X, v2 (p2
3)>X = (p2

2)>X

Gives

DX = 0, D =


u1 (p1

3)> − (p1
1)>

v1 (p1
3)> − (p1

2)>

u2 (p2
3)> − (p2

1)>

v2 (p2
3)> − (p2

2)>

 , D ∈ R4,4, X ∈ R4 (14)

• typically, D has full rank (!)

• what else: back-projected rays will generally not intersect due to image error, see next

• what else: using Jack-knife (→63) not recommended sensitive to small error

• idea: we will step back and use SVD (→90)

• but the result will not be invariant to projective frame
replacing P1 7→ P1H, P2 7→ P2H does not always result in X 7→ H−1X

• note the homogeneous form in (14) can represent points X at infinity
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IThe Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ‖DX‖2 s.t. ‖X‖ = 1, X ∈ R4

• let di be the i-th row of D taken as a column vector, then

‖DX‖2 =
4∑
i=1

(d>i X)2 =
4∑
i=1

X>did
>
i X = X>QX, where Q =

4∑
i=1

did
>
i = D>D ∈ R4,4

• we write the SVD of Q as Q =

4∑
j=1

σ2
j uju

>
j , in which [Golub & van Loan 2013, Sec. 2.5]

σ2
1 ≥ · · · ≥ σ2

4 ≥ 0 and u>l um =

{
0 if l 6= m

1 otherwise

• then X = arg min
q,‖q‖=1

q>Qq = u4 the last column of the U matrix from SVD(D>D)

Proof (by contradiction).

Let q̄ =
4∑
i=1

aiui s.t.
4∑
i=1

a2
i = 1, then ‖q̄‖ = 1, as desired, and

q̄>Q q̄ =
4∑
j=1

σ2
j q̄>uj u>j q̄ =

4∑
j=1

σ2
j (u>j q̄)2 = · · · =

4∑
j=1

a2
jσ

2
j ≥

4∑
j=1

a2
jσ

2
4 = σ2

4

since σj ≥ σ4 ut
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Icont’d

• if σ4 � σ3, there is a unique solution X = u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = sqrt(O(end-1,end-1)/O(end,end));

~ P1; 1pt: Why did we decompose D here, and not Q = D>D?
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INumerical Conditioning

• The equation DX = 0 in (14) may be ill-conditioned for
numerical computation, which results in a poor estimate for X.

Why: on a row of D there are big entries together with small
entries, e.g. of orders projection centers in mm, image points in px

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106


Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = DmX = DSS−1mX = D̄ m̄X

choose S to make the entries in D̂ all smaller than unity in absolute value:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(abs(D), 1))

2. solve for m̄X as before
3. get the final solution as mX = S m̄X

• when SVD is used in camera resection, conditioning is essential for success →62
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Algebraic Error vs Reprojection Error

• algebraic error (c – camera index, (uc, vc) – image coordinates) from SVD →91

ε
2
(X) = σ

2
4 =

2∑
c=1

[(
u
c
(p
c
3)
>
X− (p

c
1)
>
X
)2

+
(
v
c
(p
c
3)
>
X− (p

c
2)
>
X
)2
]

• reprojection error
e
2
(X) =

2∑
c=1

[(
u
c − (pc1)>X

(pc3)>X

)2

+

(
v
c − (pc2)>X

(pc3)>X

)2]
• algebraic error zero ⇔ reprojection error zero σ4 = 0⇒ non-trivial null space

• epipolar constraint satisfied ⇒ equivalent results

• in general: minimizing algebraic error is cheap but it gives inferior results

• minimizing reprojection error is expensive but it gives good results

• the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D

• the golden standard method – deferred to →106

Ex: • forward camera motion

• error f/50 in image 2, orthogonal to epipolar plane

XT – noiseless ground truth position
Xr – reprojection error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)
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IWe Have Added to The ZOO (cont’d from →69)

problem given unknown slide

camera resection 6 world–img correspondences
{

(Xi, mi)
}6

i=1
P 62

exterior orientation K, 3 world–img correspondences
{

(Xi, mi)
}3

i=1
R, t 66

relative pointcloud
orientation

3 world-world correspondences
{

(Xi, Yi)
}3

i=1
R, t 70

fundamental matrix 7 img–img correspondences
{

(mi, m
′
i)
}7

i=1
F 84

relative camera
orientation

K, 5 img–img correspondences
{

(mi, m
′
i)
}5

i=1
R, t 88

triangulation P1, P2, 1 img–img correspondence (mi, m
′
i) X 89

A bigger ZOO at http://cmp.felk.cvut.cz/minimal/

calibrated problems
• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators →119)

• algebraic error optimization (SVD) makes sense in camera resection and triangulation only

• but it is not the best method; we will now focus on ‘optimizing optimally’
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Module V

Optimization for 3D Vision

5.1 The Concept of Error for Epipolar Geometry
5.2 The Golden Standard for Triangulation
5.3 Levenberg-Marquardt’s Iterative Optimization
5.4 Optimizing Fundamental Matrix
5.5 The Correspondence Problem
5.6 Optimization by Random Sampling

covered by
[1] [H&Z] Secs: 11.4, 11.6, 4.7
[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model

Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein

algorithm. Computer Vision, Graphics, and Image Processing, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236–243.

Springer-Verlag, 2003.

O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented

epipolar constraint. In Proc ICPR, vol 1:112–115, 2004.
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IThe Concept of Error for Epipolar Geometry

Background problems: (1) Given at least 8 matched points xi ↔ yj in a general position,
estimate the most ‘likely’ fundamental matrix F; (2) given F triangulate 3D point from xi ↔ yj .

xi = (u1
i , v

1
i ), yi = (u2

i , v
2
i ), i = 1, 2, . . . , k, k ≥ 8

F

x̂i

ŷi
xi

yi

image 1 image 2

• detected points (measurements) xi, yi

• we introduce matches Zi = (u1
i , v

1
i , u

2
i , v

2
i ) ∈ R4; Z =

{
Zi
}k
i=1

• corrected points x̂i, ŷi; Ẑi = (û1
i , v̂

1
i , û

2
i , v̂

2
i ); Ẑ =

{
Ẑi
}k
i=1

are correspondences

• correspondences satisfy the epipolar geometry exactly ŷ>
i
F x̂i = 0, i = 1, . . . , k

• small correction is more probable
• let ei(·) be the ‘reprojection error’ (vector) per match i,

ei(xi, yi | x̂i, ŷi,F) =

[
xi − x̂i
yi − ŷi

]
= ei(Zi | Ẑi,F) = Zi − Ẑi(F)

‖ei(·)‖2
def
= e2

i (·) = ‖xi − x̂i‖2 + ‖yi − ŷi‖
2 = ‖Zi − Ẑi(F)‖2

(15)
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Icont’d

• the total reprojection error (of all data) then is

L(Z | Ẑ,F) =

k∑
i=1

e2
i (xi, yi | x̂i, ŷi,F) =

k∑
i=1

e2
i (Zi | Ẑi,F)

• and the optimization problem is

(Ẑ∗,F∗) = arg min
F

rank F = 2

min
Ẑ

ŷ>
i
F x̂i = 0

k∑
i=1

e2
i (xi, yi | x̂i, ŷi,F) (16)

Three possible approaches

• they differ in how the correspondences x̂i, ŷi are obtained:

1. direct optimization of reprojection error over all variables Ẑ, F →99

2. Sampson optimal correction = partial correction of Zi towards Ẑi used in an iterative
minimization over F →100

3. removing x̂i, ŷi altogether = marginalization of L(Z, Ẑ | F) over Ẑ followed by
minimization over F not covered, the marginalization is difficult
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Method 1: Reprojection Error Optimization: Idea

• we need to encode the constraints ŷ
i
F x̂i = 0, rankF = 2

• idea: reconstruct 3D point via equivalent projection matrices and use reprojection error

• the equivalent projection matrices are see [H&Z,Sec. 9.5] for complete characterization

P1 =
[
I 0

]
, P2 =

[
[e2]×F + e2e

>
1 e2

]
(17)

~ H3; 2pt: Given rank-2 matrix F, let e1, e2 be the right and left nullspace basis vectors of F, respectively.

Verify that such F is a fundamental matrix of P1, P2 from (17).

Hints:

(1) consider x̂i = P1Xi and ŷ
i

= P2Xi

(2) A is skew symmetric iff x>Ax = 0 for all vectors x.
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(cont’d) Reprojection Error Optimization: Algorithm

1. compute F(0) by the 7-point algorithm →84; construct camera P
(0)
2 from F(0)

using (17)

2. triangulate 3D points X̂
(0)

i from matches (xi, yi) for all i = 1, . . . , k →89

3. starting from P
(0)
2 , X̂

(0)

1:k minimize the reprojection error (15)

(X̂
∗
1:k,F

∗) = arg min
F, X̂1:k

k∑
i=1

e2
i (Zi | Ẑi(X̂i,P2(F)))

where

Ẑi = (x̂i, ŷi) (Cartesian), x̂i ' P1X̂i, ŷi ' P2(F) X̂i (homogeneous)

• non-linear, non-convex problem
• solves F estimation and triangulation of all k points jointly
• the solver would be quite slow

• 3k + 7 parameters to be found: latent: X̂i, for all i (correspondences!), non-latent: F

• we need minimal representations for X̂i and F →143 or introduce constraints
• there are other pitfalls; this is essentially bundle adjustment; we will return to this later →131

3D Computer Vision: V. Optimization for 3D Vision (p. 99/190) R. Šára, CMP; rev. 9–Nov–2021



IMethod 2: First-Order Error Approximation

An elegant method for solving problems like (16):

• we will get rid of the latent parameters X̂ needed for obtaining the correction
[H&Z, p. 287], [Sampson 1982]

• we will recycle the algebraic error ε = y>F x from →84

• consider matches Zi, correspondences Ẑi, and reprojection error ei = ‖Zi − Ẑi‖2

• correspondences satisfy ŷi
>F x̂i = 0, x̂i = (û1, v̂1, 1), ŷi = (û2, v̂2, 1)

• this is a manifold VF ∈ R4: a set of points Ẑ = (û1, v̂1, û2, v̂2) consistent with F

• algebraic error vanishes for Ẑi: 0 = εi(Ẑi) = ŷi
>F x̂i

L

VF

ei(Ẑi,Zi)
Ẑi

Zi Sampson’s idea: Linearize the algebraic error ε(Z) at Zi (where it is

non-zero) and evaluate the resulting linear function at Ẑi (where it is
zero). The zero-crossing replaces VF by a linear manifold L. The
point on VF closest to Zi is replaced by the closest point on L.

0 = εi(Ẑi) ≈ εi(Zi) +
∂εi(Zi)

∂Zi
(Ẑi − Zi)
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ISampson’s Approximation of Reprojection Error

• linearize ε(Z) at match Zi, evaluate it at correspondence Ẑi

εi(Zi) +
∂εi(Zi)

∂Zi︸ ︷︷ ︸
Ji(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
ei(Ẑi,Zi)

def
= εi(Zi)︸ ︷︷ ︸

given

+Ji(Zi) ei(Ẑi,Zi)︸ ︷︷ ︸
wanted

= εi(Ẑi)
!
= 0

• goal: compute function ei(·) from εi(·), where ei(·) is the distance of Ẑi from Zi

• we have a linear underconstrained equation for ei(·) e.g. εi ∈ R, ei ∈ R4

• we look for a minimal ei(·) per match i

ei(·)∗ = arg min
ei(·)
‖ei(·)‖2 subject to εi(·) + Ji(·) ei(·) = 0

• which has a closed-form solution note that Ji(·) is not invertible! ~ P1; 1pt: derive e∗i (·)

e∗i (·) = −J>i (JiJ
>
i )−1εi(·) pseudo-inverse

‖e∗i (·)‖2 = ε>i (·)(JiJ>i )−1εi(·)
(18)

• this maps εi(·) to an estimate of ei(·) per correspondence

• we often do not need ei, just ‖ei‖2 exception: triangulation →106

• the unknown parameters F are inside: ei = ei(F), εi = εi(F), Ji = Ji(F)
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IExample: Fitting A Circle To Scattered Points

Problem: Fit an origin-centered circle C : ‖x‖2− r2 = 0 to a set of 2D points Z = {xi}ki=1

1. consider radial error as the ‘algebraic error’ ε(x) = ‖x‖2 − r2 ‘arbitrary’ choice

2. linearize it at x̂ we are dropping i in εi, ei etc for clarity

ε(x̂) ≈ ε(x) +
∂ε(x)

∂x︸ ︷︷ ︸
J(x)=2x>

(x̂− x)︸ ︷︷ ︸
e(x̂,x)

= · · · = 2x>x̂− (r2 + ‖x‖2)
def
= εL(x̂)

εL(x̂) = 0 is a line with normal x
‖x‖ and intercept r2+‖x‖2

2‖x‖ not tangent to C, outside!

3. using (18), express error approximation e∗ as

‖e∗‖2 = ε>(JJ>)−1ε =
(‖x‖2 − r2)2

4‖x‖2
4. fit circle

x2

x1

ε(x) = 0

VC

εL1(x) = 0

εL2(x) = 0

x̂1

r∗ = arg min
r

k∑
i=1

(‖xi‖2 − r2)2

4‖xi‖2
= · · · =

(
1

k

k∑
i=1

1

‖xi‖2

)− 1
2

• this example results in a convex quadratic optimization problem

• note that

arg min
r

k∑
i=1

(‖xi‖2 − r2)2 =

(
1

k

k∑
i=1

‖xi‖2
) 1

2
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Thank You
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