Summary: Projection Matrix of a General Finite Perspective Camera

$$
\underline{\mathbf{m}} \simeq \mathbf{P} \underline{\mathbf{X}}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \simeq \mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

general finite perspective camera has 11 parameters:

- 5 intrinsic parameters: $f, u_{0}, v_{0}, a, \theta$
finite camera: $\operatorname{det} \mathbf{K} \neq 0$
- 6 extrinsic parameters: $\mathbf{t}, \mathbf{R}(\alpha, \beta, \gamma)$

Representation Theorem: The set of projection matrices \mathbf{P} of finite perspective cameras is isomorphic to the set of homogeneous 3×4 matrices with the left 3×3 submatrix \mathbf{Q} non-singular.
random finite camera: $Q=\operatorname{rand}(3,3)$; while $\operatorname{det}(Q)==0, Q=\operatorname{rand}(3,3) ;$ end, $P=[Q$, rand $(3,1)]$;

-Projection Matrix Decomposition

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right] \quad \longrightarrow \quad \mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]
$$

$\mathbf{Q} \in \mathbb{R}^{3,3} \quad$ full rank \quad (if finite perspective camera; see [H\&Z, Sec. 6.3] for cameras at infinity) $\mathbf{K} \in \mathbb{R}^{3,3} \quad$ upper triangular with positive diagonal elements
$\mathbf{R} \in \mathbb{R}^{3,3} \quad$ rotation $\mathrm{mtx}: \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}$ and $\operatorname{det} \mathbf{R}=+1$

1. $\left[\begin{array}{ll}\mathbf{Q} & \mathbf{q}\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]=\left[\begin{array}{ll}\mathbf{K R} & \mathbf{K t}\end{array}\right]$

$$
\text { also } \rightarrow 35
$$

2. RQ decomposition of $\mathbf{Q}=\mathbf{K R}$ using three Givens rotations
[H\&Z, p. 579]
$\mathbf{R}_{i j}$ zeroes element $i j$ in \mathbf{Q} affecting only columns i and j and the sequence preserves previously zeroed elements, e.g. (see next slide for derivation details)

$$
\mathbf{R}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{array}\right] \text { gives } \begin{gathered}
c^{2}+s^{2}=1 \\
0=k_{32}=c q_{32}+s q_{33}
\end{gathered} \Rightarrow c=\frac{q_{33}}{\sqrt{q_{32}^{2}+q_{33}^{2}}} \quad s=\frac{-q_{32}}{\sqrt{q_{32}^{2}+q_{33}^{2}}}
$$

* P1; 1pt: Multiply known matrices \mathbf{K}, \mathbf{R} and then decompose back; discuss numerical errors
- RQ decomposition nonuniqueness: $\mathbf{K R}=\mathbf{K} \mathbf{T}^{-1} \mathbf{T R}$, where $\mathbf{T}=\operatorname{diag}(-1,-1,1)$ is also a rotation, we must correct the result so that the diagonal elements of \mathbf{K} are all positive 'thin' RQ decomposition
- care must be taken to avoid overflow, see [Golub \& van Loan 2013, sec. 5.2]
|RQ Decomposition Step

```
Q = Array [ q q#1,#2 &, {3, 3}];
R32 ={{1, 0, 0},{0,c,-s},{0,s,c}};R32 // MatrixForm
```

$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & c & -s \\ 0 & s & c\end{array}\right)$

```
Q1 = Q.R32 ; Q1 // MatrixForm
```

$\left(\begin{array}{lll}q_{1,1} & c & q_{1,2}+s q_{1,3}-s q_{1,2}+c q_{1,3} \\ q_{2,1} & c & q_{2,2}+s q_{2,3}-s q_{2,2}+c q_{2,3} \\ q_{3,1} & c & q_{3,2}+s q_{3,3}-s q_{3,2}+c \\ q_{3,3}\end{array}\right)$

```
s1 = Solve [{Q1[[3]][[2]]=0, c^^2+ s^^2=1}, {c, s}][[2]]
```


Q1 /. s1 // Simplify // MatrixForm

$$
\left(\begin{array}{cc}
q_{1,1} \frac{-q_{1,3} q_{3,2}+q_{1,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{1,2} q_{3,2}+q_{1,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\
q_{2,1} \frac{-q_{2,3} q_{3,2}+q_{2,2} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} & \frac{q_{2,2} q_{3,2}+q_{2,3} q_{3,3}}{\sqrt{q_{3,2}^{2}+q_{3,3}^{2}}} \\
q_{3,1} & 0
\end{array}\right.
$$

-Center of Projection (Optical Center)

Observation: finite \mathbf{P} has a non-trivial right null-space

Theorem

Let \mathbf{P} be a camera and let there be $\underline{B} \neq \mathbf{0}$ s.t. $\mathbf{P} \underline{B}=\mathbf{0}$. Then \underline{B} is equivalent to the projection center $\underline{\mathbf{C}}$ (homogeneous, in world coordinate frame).

Proof.

1. Let $A B$ be a spatial line (B given from $\mathbf{P} \underline{B}=\mathbf{0}, A \neq B$). Then

$$
\underline{\mathbf{X}}(\lambda) \simeq \lambda \underline{\mathbf{A}}+(1-\lambda) \underline{\mathbf{B}}, \quad \lambda \in \mathbb{R}
$$

2. It projects to

$$
\mathbf{P} \underline{\mathbf{X}}(\lambda) \simeq \lambda \mathbf{P} \underline{\mathbf{A}}+(1-\lambda) \mathbf{P} \underline{\mathbf{B}} \simeq \mathbf{P} \underline{\mathbf{A}}
$$

- the entire line projects to a single point \Rightarrow it must pass through the projection center of \mathbf{P}
- this holds for any choice of $A \neq B \Rightarrow$ the only common point of the lines is the C, i.e. $\underline{\mathbf{B}} \simeq \underline{\mathbf{C}}$

Hence

$$
\mathbf{0}=\mathbf{P} \underline{\mathbf{C}}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{C} \\
1
\end{array}\right]=\mathbf{Q} \mathbf{C}+\mathbf{q} \Rightarrow \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}
$$

$\underline{\mathbf{C}}=\left(c_{j}\right)$, where $c_{j}=(-1)^{j} \operatorname{det} \mathbf{P}^{(j)}$, in which $\mathbf{P}^{(j)}$ is \mathbf{P} with column j dropped Matlab: C_homo = null(P); or C = -Q\q;

－Optical Ray

Optical ray：Spatial line that projects to a single image point．
1．Consider the following spatial line
$\mathbf{d} \in \mathbb{R}^{3}$ line direction vector，$\|\mathbf{d}\|=1, \lambda \in \mathbb{R}$ ，Cartesian representation

$$
\mathbf{X}(\lambda)=\mathbf{C}+\lambda \mathbf{d}
$$

2．The projection of the（finite）point $X(\lambda)$ is

$$
\begin{aligned}
\underline{\mathbf{m}} & \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X}(\lambda) \\
1
\end{array}\right]=\mathbf{Q}(\mathbf{C}+\lambda \mathbf{d})+\mathbf{q}=\lambda \mathbf{Q} \mathbf{d}= \\
& =\lambda\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{l}
\mathbf{d} \\
0
\end{array}\right]
\end{aligned}
$$

\ldots which is also the image of a point at infinity in \mathbb{P}^{3}
－optical ray line corresponding to image point m is the set

$$
\mathbf{X}(\mu)=\mathbf{C}+\mu \mathbf{Q}^{-1} \underline{\mathbf{m}}, \quad \mu \in \mathbb{R} \quad(\mu=1 / \lambda)
$$

－optical ray direction may be represented by a point at infinity $(\mathbf{d}, 0)$ in \mathbb{P}^{3}
－optical ray is expressed in world coordinate frame

-Optical Axis

Optical axis: Optical ray that is perpendicular to image plane π

1. points X on a given line N parallel to π project to a point at infinity $(u, v, 0)$ in π :

$$
\left[\begin{array}{l}
u \\
v \\
0
\end{array}\right] \simeq \mathbf{P} \underline{\mathbf{X}}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]\left[\begin{array}{c}
\mathbf{X} \\
1
\end{array}\right]
$$

2. therefore the set of points X is parallel to π iff

$$
\mathbf{q}_{3}^{\top} \mathbf{X}+q_{34}=0
$$

3. this is a plane with $\pm \mathbf{q}_{3}$ as the normal vector
4. optical axis direction: substitution $\mathbf{P} \mapsto \lambda \mathbf{P}$ must not change the direction
5. we select (assuming $\operatorname{det}(\mathbf{R})>0$)

$$
\mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3}
$$

$$
\text { if } \mathbf{P} \mapsto \lambda \mathbf{P} \text { then } \operatorname{det}(\mathbf{Q}) \mapsto \lambda^{3} \operatorname{det}(\mathbf{Q}) \quad \text { and } \quad \mathbf{q}_{3} \mapsto \lambda \mathbf{q}_{3}
$$

- the axis is expressed in world coordinate frame

-Principal Point

Principal point: The intersection of image plane and the optical axis

1. as we saw, \mathbf{q}_{3} is the directional vector of optical axis
2. we take point at infinity on the optical axis that must project to the principal point m_{0}
3. then

$$
\underline{\mathbf{m}}_{0} \simeq\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]\left[\begin{array}{c}
\mathbf{q}_{3} \\
0
\end{array}\right]=\mathbf{Q} \mathbf{q}_{3}
$$

$$
\text { principal point: } \quad \underline{\mathbf{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}
$$

- principal point is also the center of radial distortion

-Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.
optical ray given by $m \quad \mathbf{d} \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}}$ optical ray given by $m^{\prime} \quad \mathbf{d}^{\prime} \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}$

$$
\mathbf{p} \simeq \mathbf{d} \times \mathbf{d}^{\prime}=\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}\right) \times\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}\right)=\mathbf{Q}^{\top}\left(\underline{\mathbf{m}} \times \underline{\mathbf{m}}^{\prime}\right)=\mathbf{Q}^{\top} \underline{\mathbf{n}}
$$

- note the way \mathbf{Q} factors out!
hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X}-\mathbf{C})}_{\rightarrow 30}=\underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}}$ for every X in plane ρ
optical plane is given by $n: \quad \underline{\boldsymbol{\rho}} \simeq \mathbf{P}^{\top} \underline{\mathbf{n}} \quad \rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0$

Cross－Check：Optical Ray as Optical Plane Intersection

$\begin{array}{rlrl}\text { optical plane normal given by } n & \mathbf{p} & =\mathbf{Q}^{\top} \underline{\mathbf{n}} \\ \text { optical plane normal given by } n^{\prime} & \mathbf{p}^{\prime} & =\mathbf{Q}^{\top} \underline{\mathbf{n}}\end{array}$
$\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}$

Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$$
\begin{aligned}
\underline{\mathbf{C}} & \simeq \operatorname{rnull}(\mathbf{P}), \quad \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q} \\
\mathbf{d} & =\mathbf{Q}^{-1} \underline{\mathbf{m}} \\
\mathbf{o} & =\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3} \\
\underline{\mathbf{m}}_{0} & \simeq \mathbf{Q} \mathbf{q}_{3}
\end{aligned}
$$

$$
\underline{\rho}=\mathbf{P}^{\top} \underline{\mathbf{n}}
$$

$$
\mathbf{K}=\left[\begin{array}{ccc}
a f & -a f \cot \theta & u_{0} \\
0 & f / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{R}
$$

$$
\mathrm{t}
$$

projection center (world coords.) $\rightarrow 35$
optical ray direction (world coords.) $\rightarrow 36$
outward optical axis (world coords.) $\rightarrow 37$ principal point (in image plane) $\rightarrow 38$ optical plane (world coords.) $\rightarrow 39$ camera (calibration) matrix (f, u_{0}, v_{0} in pixels) $\rightarrow 31$ camera rotation matrix (cam coords.) $\rightarrow 30$ camera translation vector (cam coords.) $\rightarrow 30$

What Can We Do with An 'Uncalibrated' Perspective Camera?

How far is the engine?
distance between sleepers (ties) 0.806 m but we cannot count them, the image resolution is too low
We will review some life-saving theory...
\ldots. and build a bit of geometric intuition. . .

In fact

- 'uncalibrated' $=$ the image contains a 'calibrating object' that suffices for the task at hand

－Vanishing Point

Vanishing point：the limit of the projection of a point that moves along a space line infinitely in one direction． the image of the point at infinity on the line

$$
\underline{\mathbf{m}}_{\infty} \simeq \lim _{\lambda \rightarrow \pm \infty} \mathbf{P}\left[\begin{array}{c}
\mathbf{X}_{0}+\lambda \mathbf{d} \\
1
\end{array}\right]=\cdots \simeq \mathbf{Q} \mathbf{d}
$$

\circledast P1；1pt：Prove（use Cartesian coordinates and L＇Hôpital＇s rule）
－the V．P．of a spatial line with directional vector \mathbf{d} is $\underline{\mathbf{m}}_{\infty} \simeq \mathbf{Q} \mathbf{d}$
－V．P．is independent on line position \mathbf{X}_{0} ，it depends on its directional vector only
－all parallel（world）lines share the same（image）V．P．，including the optical ray defined by m_{∞}

Some Vanishing Point "Applications"

where is the sun?

what is the wind direction?
(must have video)

fly above the lane, at constant altitude!

- Vanishing Line

Vanishing line: The set of vanishing points of all lines in a plane
the image of the line at infinity in the plane and in all parallel planes (!)

- V.L. n corresponds to spatial plane of normal vector $\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$
because this is the normal vector of a parallel optical plane (!) $\rightarrow 39$
- a spatial plane of normal vector \mathbf{p} has a V.L. represented by $\underline{\mathbf{n}}=\mathbf{Q}^{-\top} \mathbf{p}$.

Cross Ratio

Four distinct collinear spatial points R, S, T, U define cross-ratio

$$
[R S T U]=\frac{|\overrightarrow{R T}|}{|\overrightarrow{S R}|} \frac{|\overrightarrow{U S}|}{|\overrightarrow{T U}|}
$$

a mnemonic (∞)
$|\overrightarrow{R T}|$ - signed distance from R to T in the arrow direction 6 cross-ratios from four points:

$$
[S R U T]=[R S T U],[R S U T]=\frac{1}{[R S T U]},[R T S U]=1-[R S T U]
$$

Obs: $\quad[R S T U]=\frac{|\underline{\mathbf{r}} \underline{\mathbf{t}} \underline{\mathbf{v}}|}{|\underline{\mathbf{s}} \underline{\mathbf{r}} \mathbf{v}|} \cdot \frac{|\underline{\mathbf{u}} \underline{\mathbf{s}} \quad \underline{\mathbf{v}}|}{|\underline{\mathbf{t}} \underline{\mathbf{u}} \quad \underline{\mathbf{v}}|}, \quad|\underline{\underline{\mathbf{r}}} \underline{\underline{\mathbf{t}}} \underline{\mathbf{v}}|=\operatorname{det}\left[\begin{array}{lll}\underline{\mathbf{r}} & \underline{\mathbf{t}} & \underline{\mathbf{v}}\end{array}\right]=(\underline{\underline{\mathbf{r}}} \times \underline{\mathbf{t}})^{\top} \underline{\mathbf{v}}$

Corollaries:

- cross ratio is invariant under homographies $\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}}$ plug $\mathbf{H} \underline{\mathbf{x}}$ in (1): $\left(\mathbf{H}^{-\top}(\underline{\mathbf{r}} \times \underline{\mathbf{t}})\right)^{\top} \mathbf{H} \underline{\mathbf{v}}$
- cross ratio is invariant under perspective projection: $[R S T U]=[r s t u]$
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points R, S, T, U may be at infinity (we take the limit, in effect $\frac{\infty}{\infty}=1$)

1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:
$[P]=\left[P_{0} P_{1} P P_{\infty}\right]=\left[p_{0} p_{1} p p_{\infty}\right]=\frac{\left|\overrightarrow{p_{0} p}\right|}{\left|\overrightarrow{p_{1} p_{0}}\right|} \frac{\left|\overrightarrow{p_{\infty} p_{1}}\right|}{\left|\overrightarrow{p p_{\infty}}\right|}=[p]$

naming convention:

$$
\begin{aligned}
P_{0}-\text { the origin } & {\left[P_{0}\right] } & =0 \\
P_{1}-\text { the unit point } & {\left[P_{1}\right] } & =1 \\
P_{\infty}-\text { the supporting point } & {\left[P_{\infty}\right] } & = \pm \infty
\end{aligned}
$$

$$
[P]=[p]
$$

$[P]$ is equal to Euclidean coordinate along N
$[p]$ is its measurement in the image plane

Applications

- Given the image of a 3D line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined
- Finding v.p. of a line through a regular object

Thank You

