
3D Computer Vision
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ICholeski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

find x such that −
z∑
r=1

L>r νr(θ
s) =

( z∑
r=1

L>r Lr + λ diag
(
L>r Lr

))
x

• A is very large approx. 3 · 104 × 3 · 104 for a small problem of 10000 points and 5 cameras

• A is sparse and symmetric, A−1 is dense direct matrix inversion is prohibitive

Choleski: symmetric positive definite matrix A can be decomposed to A =
LL>, where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LL> transforms the problem to LL>x︸ ︷︷ ︸
c

= b

2. solve for x in two passes:

Lc = b ci := L−1
ii

(
bi −

∑
j<i

Lijcj
)

forward substitution, i = 1, . . . , q (params)

L>x = c xi := L−1
ii

(
ci −

∑
j>i

Ljixj
)

back-substitution

• Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are 9p + 121k + 66pk ≈ 3.4 · 106; ca. 250× fewer than all elements

• it can be computed on single elements or on entire blocks
• use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]

• λ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L’
% for sparse square symmetric positive definite matrix A,
% especially efficient for arrowhead sparse matrices.

% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)

[p,q] = size(A);
if p ~= q, error ’Matrix A is not square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))’;
L(i,j) = a/L(j,j);

end
a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
if a < 0, error ’Matrix A is not positive definite’; end
L(i,i) = sqrt(a);

end
end
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IGauge Freedom (kalibračńı invariance)

1. The external frame is not fixed: See Projective Reconstruction Theorem →132

mij ' PjXi = PjH
−1HXi = P′jX

′
i

2. Some representations are not minimal, e.g.

• P is 12 numbers for 11 parameters
• we may represent P in decomposed form K, R, t
• but R is 9 numbers representing the 3 parameters of rotation

As a result

• there is no unique solution
• matrix

∑
r L
>
r Lr is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2. fixing the scale (e.g. s12 = 1)
3a. either imposing constraints on projective entities

• cameras, e.g. P3,4 = 1 this excludes affine cameras
• points, e.g. (Xi)4 = 1 or ‖Xi‖2 = 1 the 2nd: can represent points at infinity

3b. or using minimal representations
• points in their Euclidean representation Xi but finite points may be an unrealistic model
• rotation matrices can be represented by skew-symmetric matrices →149
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Implementing Simple Linear Constraints (by programmatic elimination)

What for?
1. fixing external frame as in θi = ti, skl = 1 for some i, k, l ‘trivial gauge’

2. representing additional knowledge as in θi = θj e.g. cameras share calibration matrix K

Introduce reduced parameters θ̂ and
replication matrix T:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

then Lr in LM changes to Lr T and
everything else stays the same →108

θ3

θ4
θ5

T = t =

θ2

θ̂1 θ̂2 θ̂3 θ̂4

θ1 1

1

1

1

1

these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t or filter the init by pseudoinverse θ0 7→ T†θ0

• no need for computing derivatives for θj corresponding to all-zero rows of T fixed θ

• constraining projective entities →149–151

• more complex constraints tend to make normal equations dense

• implementing constraints is safer than explicit renaming of the parameters, gives a flexibility
to experiment

• other methods are much more involved, see [Triggs et al. 1999]

• BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]
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Matrix Exponential: A path to Minimal Parameterizations

• for any square matrix we define

expm(A) =

∞∑
k=0

1

k!
Ak

note: A0 = I

• some properties:

expm(x) = ex, x ∈ R, expm0 = I, expm(−A) =
(
expmA

)−1
,

expm(aA + bA) = expm(aA) expm(bA), expm(A + B) 6= expm(A) expm(B)

expm(A>) = (expmA)> hence if A is skew symmetric then expmA is orthogonal:(
expm(A)

)>
= expm(A>) = expm(−A) =

(
expm(A)

)−1

det
(
expmA

)
= etrA

Some consequences

• traceless matrices (trA = 0) map to unit-determinant matrices ⇒ we can represent
homogeneous matrices

• skew-symmetric matrices map to orthogonal matrices ⇒ we can represent rotations

• matrix exponential provides the exponential map from the powerful Lie group theory
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Lie Groups Useful in 3D Vision

group matrix represent

special linear SL(3,R) real 3× 3, unit determinant H 2D homography

special linear SL(4,R) real 4× 4, unit determinant 3D homography

special orthogonal SO(3) real 3× 3 orthogonal R 3D rotation

special Euclidean SE(3) 4× 4
[
R t
0 1

]
, R ∈ SO(3), t ∈ R3 3D rigid motion

similarity Sim(3) 4× 4
[
R t
0 s−1

]
, s ∈ R \ 0 rigid motion + scale

• Lie group G = topological group that is also a smooth manifold with nice properties

• Lie algebra g = vector space associated with a Lie group (tangent space of the manifold)

• group: this is where we need to work

• algebra: this is how to represent group elements with a minimal number of parameters

• Exponential map = map between algebra and its group exp: g→ G

• for matrices exp = expm

• in most of the above groups we a have a closed-form formula for the exponential and for its
principal inverse

• Jacobians are also readily available for SO(3), SE(3) [Solà 2020]
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Homography

H = expmZ

• SL(3,R) group element

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 s.t. detH = 1

• sl(3,R) algebra element 8 parameters

Z =

z11 z12 z13

z21 z22 z23

z31 z32 −(z11 + z22)



• note that trZ = 0
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IRotation in 3D

R = expm [φ]×, φ = (φ1, φ2, φ3) = ϕ eϕ, 0 ≤ ϕ < π, ‖eϕ‖ = 1

• SO(3) group element

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 s.t. R−1 = R>

• so(3) algebra element 3 parameters

[φ]× =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0


• exponential map in closed form Rodrigues’ formula

R = expm [φ]× =

∞∑
n=0

[φ]n×
n!

=
~ 1· · · = I +

sinϕ

ϕ
[φ]× +

1− cosϕ

ϕ2
[φ]2×

• (principal) logarithm log is a periodic function

0 ≤ ϕ < π, cosϕ =
1

2
(tr(R)− 1) , [φ]× =

ϕ

2 sinϕ
(R−R>),

• φ is rotation axis vector eϕ scaled by rotation angle ϕ in radians

• finite limits for ϕ→ 0 exist: sin(ϕ)/ϕ→ 1, (1− cosϕ)/ϕ2 → 1/2
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3D Rigid Motion

M = expm [ν]∧

• SE(3) group element 4× 4 matrix

M =

[
R t
0 1

]
s.t. R ∈ SO(3), t ∈ R3

• se(3) algebra element 4× 4 matrix

[ν]∧ =

[
[φ]× ρ
0 0

]
s.t. φ ∈ R3, ϕ = ‖φ‖ < π, ρ ∈ R3

• exponential map in closed form

R = expm [φ]×, t = dexpm([φ]×)ρ

dexpm([φ]×) =

∞∑
n=0

[φ]n×
(n+ 1)!

= I +
1− cosϕ

ϕ2
[φ]× +

ϕ− sinϕ

ϕ3
[φ]2×

dexpm−1([φ]×) = I− 1

2
[φ]× +

1

ϕ2

(
1− ϕ

2
cot

ϕ

2

)
[φ]2×

• dexpm: differential of the exponential in SO(3)

• (principal) logarithm via a similar trick as in SO(3)

• finite limits exist: (ϕ− sinϕ)/ϕ3 → 1/6

• this form is preferred to SO(3)× R3

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 150/197) R. Šára, CMP; rev. 14–Dec–2021



IMinimal Representations for Other Entities

• fundamental matrix via SO(3)× SO(3)× R

F = UDV>, D = diag(1, d2, 0), U,V ∈ SO(3), 3 + 1 + 3 = 7 DOF

• essential matrix via SO(3)× R3

E = [−t]×R, R ∈ SO(3), t ∈ R3, ‖t‖ = 1, 3 + 2 = 5 DOF

• camera pose via SO(3)× R3 or SE(3)

P = K
[
R t

]
=
[
K 0

]
M, 5 + 3 + 3 = 11 DOF

• Sim(3) useful for SfM without scale

• closed-form formulae still exist but are a bit messy

• a (bit too brief) intro to Lie groups in 3D vision/robotics and SW:

J. Solà, J. Deray, and D. Atchuthan. A micro Lie theory for state estimation in robotics.

arXiv:1812.01537v7 [cs.RO], August 2020.
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Module VII

Stereovision

7.1 Introduction
7.2 Epipolar Rectification
7.3 Binocular Disparity and Matching Table
7.4 Image Similarity
7.5 Marroquin’s Winner Take All Algorithm
7.6 Maximum Likelihood Matching
7.7 Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010 referenced as [SP]

additional references

C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In Proc Computer Vision

and Pattern Recognition Workshop, p. 73, 2003.

J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE

CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.

M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In

Proc Int Conf on Computer Vision, vol. 1:496–501, 1999.
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Stereovision: What Are The Relative Distances?

The success of a model-free stereo matching algorithm is unlikely:

WTA Matching:

for every left-image pixel find the most
similar right-image pixel along the
corresponding epipolar line [Marroquin 83]

disparity map from WTA a good disparity map

• monocular vision already gives a rough 3D sketch because we understand the scene
• pixelwise independent matching without any understanding is difficult
• matching can benefit from a geometric simplification of the problem
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ILinear Epipolar Rectification for Easier Correspondence Search

Obs:
• if we map epipoles to infinity, epipolar lines become parallel
• we then rotate them to become horizontal
• we then scale the images to make corresponding epipolar lines colinear
• this can be achieved by a pair of (non-unique) homographies applied to the images

Problem: Given fundamental matrix F or camera matrices P1, P2, compute a pair of
homographies that maps epipolar lines to horizontal with the same row coordinate.

Procedure:
1. find a pair of rectification homographies H1 and H2.
2. warp images using H1 and H2 and transform the fundamental matrix

F 7→ H−>2 FH−1
1 or the cameras P1 7→ H1P1, P2 7→ H2P2.

rectification 1 rectification 2

original pair

rectification ∞
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IRectification Homographies

Assumption: Cameras (P1,P2) are rectified by a homography pair (H1,H2):

P∗i = HiPi = HiKiRi

[
I −Ci

]
, i = 1, 2

rectified entities: F∗, l∗1 , l∗2 , etc:
m∗

2 = (u∗
2, v

∗)v

u

m∗
1 = (u∗

1, v
∗)

l∗1 e∗2l∗2

• the rectified location difference d = u∗1 − u∗2 is called disparity

corresponding epipolar lines must be:
1. parallel to image rows ⇒ epipoles become e∗1 = e∗2 = (1, 0, 0)

2. equivalent l∗2 = l∗1 : l∗1 ' e∗1 ×m1 = [e∗1]×m1 ' l∗2 ' F∗m1 ⇒ F∗ = [e∗1]×

• therefore the canonical fundamental matrix is

F∗ '

0 0 0
0 0 −1
0 1 0


A two-step rectification procedure

1. find some pair of primitive rectification homographies Ĥ1, Ĥ2

2. upgrade to a pair of optimal rectification homographies while preserving F∗
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IGeometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F∗?

• we know that F = (Q1Q
−1
2 )>[e1]× →79

• we choose Q∗1 = K∗1, Q∗2 = K∗2R
∗; then

F∗ ' (Q∗1Q
∗
2
−1

)>[e∗1]×
!' (K∗1R

∗>K∗2
−1)>F∗

• we look for R∗, K∗1, K∗2 compatible with

(K∗1R
∗>K∗

2
−1)>F∗ = λF∗, R∗R∗> = I, K∗1,K

∗
2 upper triangular

• we also want b∗ from e∗1 ' P∗1C
∗
2 = K∗1b

∗ b∗ in cam. 1 frame

• result:

R∗ = I, b∗ =

b0
0

, K∗1 =

k11 k12 k13

0 f v0

0 0 1

, K∗2 =

k21 k22 k23

0 f v0

0 0 1

 (33)

• rectified cameras are in canonical relative pose not rotated, canonical baseline

• rectified calibration matrices can differ in the first row only

• when K∗1 = K∗2 then the rectified pair is called the standard stereo pair and the
homographies standard rectification homographies

• standard rectification homographies: points at infinity have zero disparity

P∗iX∞ = K
[
I −Ci

]
X∞ = KX∞ i = 1, 2

• this does not mean that the images are not distorted after rectification
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IPrimitive Rectification

Goal: Given fundamental matrix F, derive some simple rectification homographies H1, H2

1. Let the SVD of F be UDV> = F, where D = diag(1, d2, 0), 1 ≥ d2 > 0

2. Write D as D = A>F∗B for some regular A, B. For instance (F∗ is given →155)

A =

0 0 1
0 −d 0
1 0 0

, B =

0 0 1
1 0 0
0 d 0


3. Then

F = UDV> = UA>︸ ︷︷ ︸
Ĥ
>
2

F∗ BV>︸ ︷︷ ︸
Ĥ1

= Ĥ
>
2 F∗ Ĥ1 Ĥ1, Ĥ2 orthonormal

and the primitive rectification homographies are

Ĥ2 = AU>, Ĥ1 = BV>

~ P1; 1pt: derive some other admissible A, B

• rectification homographies do exist →155

• there are other primitive rectification homographies, these suggested are just simple to obtain

3D Computer Vision: VII. Stereovision (p. 157/197) R. Šára, CMP; rev. 14–Dec–2021



IThe Set of All Rectification Homographies

Proposition 1 Homographies A1 and A2 are rectification-preserving if the images stay
rectified, i.e. if A2

−> F∗A1
−1 ' F∗, which gives

A1 =

l1 l2 l3
0 sv tv
0 q 1

 , A2 =

r1 r2 r3

0 sv tv
0 q 1

 ,
uv

where sv 6= 0, tv, l1 6= 0, l2, l3, r1 6= 0, r2, r3, q are 9 free parameters.

general transformation standard

l1, r1 horizontal scales l1 = r1

l2, r2 horizontal shears l2 = r2

l3, r3 horizontal shifts l3 = r3

q common special projective

sv common vertical scale

tv common vertical shift

9DoF 9− 3 = 6DoF

• q is due to a rotation about the baseline proof: find a rotation G that brings K to upper triangular form

via RQ decomposition: A1K
∗
1 = K̂1G and A2K

∗
2 = K̂2G• sv changes the focal length
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The Rectification Group

Corollary for Proposition 1 Let H̄1 and H̄2 be (primitive or other) rectification
homographies. Then H1 = A1H̄1, H2 = A2H̄2 are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies (A1, A2) form a group with
group operation (A′1, A

′
2) ◦ (A1, A2) = (A′1 A1, A

′
2 A2).

Proof:

• closure by Proposition 1

• associativity by matrix multiplication

• identity belongs to the set

• inverse element belongs to the set by A>2 F∗A1 ' F∗ ⇔ F∗ ' A−>2 F∗A−1
1
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IPrimitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: d = 1 ⇒ Ĥ1, Ĥ2 (→157) are orthonormal

1. determine primitive rectification homographies (Ĥ1, Ĥ2) from the essential matrix
2. choose a suitable common calibration matrix K, e.g.

K =

f 0 u0

0 f v0

0 0 1

, f =
1

2
(f1 + f2), u0 =

1

2
(u1

0 + u2
0), etc.

3. the final rectification homographies applied as Pi 7→ HiPi are

H1 = KĤ1K
−1
1 , H2 = KĤ2K

−1
2

• we got a standard stereo pair (→156) and non-negative disparity:
let K−1

i Pi = Ri

[
I −Ci

]
, i = 1, 2 note we started from E, not F

H1P1 = KĤ1K
−1
1 P1 = KBV>R1︸ ︷︷ ︸

R∗

[
I −C1

]
= KR∗

[
I −C1

]
H2P2 = KĤ2K

−1
2 P2 = KAU>R2︸ ︷︷ ︸

R∗

[
I −C2

]
= KR∗

[
I −C2

]
• one can prove that BV>R1 = AU>R2 with the help of essential matrix decomposition (13)

• points at infinity project by KR∗ in both cameras ⇒ they have zero disparity →166
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ISummary & Remarks: Linear Rectification

standard rectification homographies reproject onto
a common image plane parallel to the baseline

X

C1 C2

f

• rectification is done with a pair of homographies (one per image) →154
⇒ rectified camera centers are equal to the original ones
• binocular rectification: a 9-parameter family of rectification homographies
• trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
• in general, linear rectification is not possible for more than three cameras

• rectified cameras are in canonical orientation →156
⇒ rectified image projection planes are coplanar

• equal rectified calibration matrices give standard rectification →156
⇒ rectified image projection planes are equal

• primitive rectification is already standard in calibrated cameras →160

• known F used alone does not allow standardization of rectification homographies

• for that we need either of these:

1. projection matrices, or calibrated cameras, or
2. a few points at infinity calibrating k1i, k2i, i = 1, 2, 3 in (33)
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Optimal and Non-linear Rectification

Optimal choice for the free parameters

• by minimization of residual image distortion, eg.
[Gluckman & Nayar 2001]

A∗1 = arg min
A1

∫∫
Ω

(
det J(A1Ĥ1x)− 1

)2
dx

• by minimization of image information loss
[Matoušek, ICIG 2004]

• non-linear rectification suitable for forward motion
non-parametric: [Pollefeys et al. 1999]

analytic: [Geyer & Daniilidis 2003]

forward egomotion rectified images, Pollefeys’ method
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Thank You
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