3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 5, 2021

Open Informatics Master's Course

-Nomography in \mathbb{P}^{2}

Projective plane \mathbb{P}^{2} : Vector space of dimension 3 excluding the zero vector, $\mathbb{R}^{3} \backslash(0,0,0)$, factorized to linear equivalence classes ('rays'), $\underline{\mathbf{x}} \simeq \lambda \underline{\mathbf{x}}, \lambda \neq 0$ including 'points at infinity' we call $\underline{x} \in \mathbb{P}^{2}$ 'points'

Homography in \mathbb{P}^{2} : Non-singular linear mapping in \mathbb{P}^{2}

$$
\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}}, \quad \mathbf{H} \in \mathbb{R}^{3,3} \text { non-singular }
$$

an analogic definition for \mathbb{P}^{3}

Defining properties

- collinear points are mapped to collinear points
lines of points are mapped to lines of points
- concurrent lines are mapped to concurrent lines
- and point-line incidence is preserved

$$
\text { concurrent }=\text { intersecting at a point }{ }^{\top}
$$ e.g. line intersection points mapped to line intersection points

- \mathbf{H} is a 3×3 non-singular matrix, $\lambda \mathbf{H} \simeq \mathbf{H}$ equivalence class, 8 degrees of freedom
- homogeneous matrix representative: $\operatorname{det} \mathbf{H}=1$
$\mathbf{H} \in \mathrm{SL}(3)$
- what we call homograph here is often called 'projective collineation' in mathematics

- Mapping 2D Points and Lines by Homography

$$
\begin{aligned}
\underline{\mathbf{m}}^{\prime} & \simeq \mathbf{H} \underline{\mathbf{m}} & & \text { (image) point } \\
\underline{\mathbf{n}}^{\prime} & \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}} & \text { (image) line } & \mathbf{H}^{-\top}=\left(\mathbf{H}^{-1}\right)^{\top}=\left(\mathbf{H}^{\top}\right)^{-1}
\end{aligned}
$$

- incidence is preserved: $\left(\underline{\mathbf{m}}^{\prime}\right)^{\top} \underline{\mathbf{n}}^{\prime} \simeq \underline{\mathbf{m}}^{\top} \mathbf{H}^{\top} \mathbf{H}^{-\top} \underline{\mathbf{n}}=\underline{\mathbf{m}} \underline{\mathrm{m}}^{\top} \underline{\mathbf{n}}=0$

Mapping a finite 2D point $\mathbf{m}=(u, v)$ to $\underline{\mathbf{m}}=\left(u^{\prime}, v^{\prime}\right)$

1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, $\underline{\mathbf{m}}=(u, v, \mathbf{1})$
2. map by homography, $\underline{m}^{\prime}=\mathbf{H} \underline{m}$
3. if $m_{3}^{\prime} \neq 0$ convert the result $\underline{\mathbf{m}}^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)$ back to Cartesian coordinates (pixels),

$$
u^{\prime}=\frac{m_{1}^{\prime}}{m_{3}^{\prime}} \mathbf{1}, \quad v^{\prime}=\frac{m_{2}^{\prime}}{m_{3}^{\prime}} \mathbf{1}
$$

- note that, typically, $m_{3}^{\prime} \neq 1$
$m_{3}^{\prime}=1$ when \mathbf{H} is affine
- an infinite point $\underline{\mathbf{m}}=(u, v, 0)$ maps the same way

Some Homographic Tasters

Rectification of camera rotation: $\rightarrow 53$ (geometry), $\rightarrow 122$ (homography estimation)

$\mathbf{H} \simeq \mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1}$ maps from image plane to facade plane
Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

$$
\mathbf{H} \simeq \mathbf{K}\left(\mathbf{R}-\frac{\mathbf{t \mathbf { n }}^{\top}}{d}\right) \mathbf{K}^{-1} \quad \text { maps from plane to translated plane }[\mathbf{H \& Z}, \mathrm{p} .327]
$$

-Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

- Euclidean mapping (EM): rotation, translation and their combination
$\mathbf{H}=\left[\begin{array}{ccc}\cos \phi & -\sin \phi & t_{x} \\ \sin \phi & \cos \phi & t_{y} \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{c}\mathbf{R} \\ \mathbf{0}^{\top}\end{array}\right.$
- eigenvalues $\left(1, e^{-i \phi}, e^{i \phi}\right) R x+t$
- $\mathbf{H} \in \mathrm{SE}(3)$
$\mathrm{EM}=$ The most general homography preserving

1. lengths: Let $\underline{\mathbf{x}}_{i}^{\prime}=\mathbf{H} \underline{\mathbf{x}}_{i}$ (check we can use $=$ instead of \simeq). Let $\left(x_{i}\right)_{3}=1$, Then

$$
\left\|\underline{\underline{x}}_{2}^{\prime}-\underline{\mathbf{x}}_{1}^{\prime}\right\|=\left\|\mathbf{H} \underline{\mathbf{x}}_{2}-\mathbf{H} \underline{\mathbf{x}}_{1}\right\|=\left\|\mathbf{H}\left(\underline{\mathbf{x}}_{2}-\underline{\mathbf{x}}_{1}\right)\right\|=\stackrel{\text { P1; } 1 \mathrm{pt}}{\cdots}=\left\|\underline{\mathbf{x}}_{2}-\underline{\mathbf{x}}_{1}\right\|
$$

2. angles check the dot-product of normalized differences from a point $(\mathbf{x}-\mathbf{z})^{\top}(\mathbf{y}-\mathbf{z}) \quad$ (Cartesian(!))
3. areas: $\operatorname{det} \mathbf{H}=1 \Rightarrow$ unit Jacobian; follows from 1. and 2.

- eigenvectors when $\phi \neq k \pi, k=0,1, \ldots$ (columnwise)

$$
\mathbf{e}_{1} \simeq\left[\begin{array}{c}
t_{x}+t_{y} \cot \frac{\phi}{2} \\
t_{y}-t_{x} \cot \frac{\phi}{2} \\
2
\end{array}\right], \quad \mathbf{e}_{2} \simeq\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3} \simeq\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right] \quad \mathbf{e}_{2}, \mathbf{e}_{3}-\text { circular points, } i-\text { imaginary unit }
$$

4. circular points: points at infinity $(i, 1,0),(-i, 1,0)$ (preserved even by similarity)

- similarity: scaled Euclidean mapping (does not preserve lengths, areas)

-Homography Subgroups: Affine Mapping

$\mathrm{AM}=$ The most general homography preserving
rotation by 30°

- parallelism

- ratio of areas
- ratio of lengths on parallel lines

Dlinear combinations of vectors (e.g. midpoints)
(2) convex hull

0 line at infinity $\underline{\mathbf{n}}_{\infty}$ (not pointwise)
does not preserve \quad observe $\mathbf{H}^{\top} \underline{\mathbf{n}}_{\infty} \simeq\left[\begin{array}{lll}a_{11} & a_{21} & 0 \\ a_{12} & a_{22} & 0 \\ t_{x} & t_{y} & 1\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\underline{\mathbf{n}}_{\infty} \quad \Rightarrow \quad \underline{\mathbf{n}}_{\infty} \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}}_{\infty}$
lengths

- angles
- areas
- circular points

Euclidean mappings preserve all properties affine mappings preserve, of course

-Homography Subgroups: General Homography

$\mathbf{H}=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$
$\mathbf{H} \in \operatorname{SL}(3)$
preserves only

- incidence and concurrency
- collinearity
- cross-ratio on the line
$\rightarrow 46$
does not preserve
- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths
- linear combinations of vectors (midpoints, etc.)
- convex hull

-Canonical Perspective Camera (Pinhole Camera, Camera Obscura)

1. in this picture we are looking 'down the street'
2. right-handed canonical coordinate system (x, y, z) with unit vectors $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$
3. origin $=$ center of projection C
4. image plane π at unit distance from C
5. optical axis O is perpendicular to π
6. principal point x_{p} : intersection of O and π
7. perspective camera is given by C and π

projected point in the natural image coordinate system:

$$
\frac{y^{\prime}}{1}=y^{\prime}=\frac{y}{1+z-1}=\frac{y}{z}, \quad x^{\prime}=\frac{x}{z}
$$

－Natural and Canonical Image Coordinate Systems

$$
\begin{aligned}
& \text { projected point in canonical camera }(z \neq 0) \\
& \qquad\left(x^{\prime}, y^{\prime}, 1\right)=\left(\frac{x}{z}, \frac{y}{z}, 1\right)=\frac{1}{z}(x, y, z) \simeq(x, y, z)=\underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}_{0}=[\mathbf{I} \mid \mathbf{0}]} \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\mathbf{P}_{0} \underline{\mathbf{X}}
\end{aligned}
$$

projected point in scanned image scale by f and translate origin to image corner

$u=f \frac{x}{z}+u_{0}$

$$
\frac{1}{z}\left[\begin{array}{c}
f x+z u_{0} \\
f y+z v_{0} \\
z
\end{array}\right] \underset{\sim}{\sim}\left[\begin{array}{ll}
f & 0 \\
0 & f \\
0 & 0
\end{array}\right.
$$

$v=f \frac{y}{z}+v_{0}$
－＇calibration＇matrix \mathbf{K} transforms canonical \mathbf{P}_{0} to standard perspective camera \mathbf{P}

Computing with Perspective Camera Projection Matrix

Projection from world to image in standard camera \mathbf{P} :

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{cccc}
f & 0 & u_{0} & 0 \\
0 & f & v_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\mathbf{P}=k \mathbf{P}}\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
f x+u_{0} z \\
f y+v_{0} z \\
z
\end{array}\right] \simeq \underbrace{\left[\begin{array}{c}
x+\frac{z}{f} u_{0} \\
y+\frac{z}{f} v_{0} \\
\frac{z}{f}
\end{array}\right]}_{(\mathrm{a})} \simeq\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]=\underline{\mathbf{m}} \\
& \frac{m_{1}}{m_{3}}=\frac{f x}{z}+u_{0}=u, \quad \frac{m_{2}}{m_{3}}=\frac{f y}{z}+v_{0}=v \text { when } m_{3} \neq 0
\end{aligned}
$$

f - 'focal length' - converts length ratios to pixels, $[f]=\mathrm{px}, f>0$
$\left(u_{0}, v_{0}\right)$ - principal point in pixels

Perspective Camera:

1. dimension reduction
2. nonlinear unit change $\mathbf{1} \mapsto \mathbf{1} \cdot z / f$, see (a)
for convenience we use $P_{11}=P_{22}=f$ rather than $P_{33}=1 / f$ and the u_{0}, v_{0} in relative units
3. $m_{3}=0$ represents points at infinity in image plane π
i.e. points with $z=0$

Changing The Outer（World）Reference Frame

A transformation of a point from the world to camera coordinate system：

$$
\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}
$$

R－camera rotation matrix
t－camera translation vector

world orientation in the camera coordinate frame \mathcal{F}_{c} world origin in the camera coordinate frame \mathcal{F}_{c}

$$
\mathbf{P}_{\mathbf{X}_{c}}=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{X}_{c} \\
1
\end{array}\right]=\mathbf{K} \mathbf{P}_{0}\left[\begin{array}{c}
\mathbf{R} \mathbf{X}_{w}+\mathbf{t} \\
1
\end{array}\right]=\mathbf{K} \underbrace{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \underbrace{\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\mathbf{T}}\left[\begin{array}{c}
\mathbf{X}_{w} \\
1
\end{array}\right]=\underbrace{\mathbf{K}}_{\mathbf{P}} \begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}] \underline{\mathbf{X}}_{w} .}_{\mathbf{P}_{0}}
$$

\mathbf{P}_{0}（a $3 \times 4 \mathrm{mtx}$ ）discards the last row of \mathbf{T}
－ \mathbf{R} is rotation， $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \operatorname{det} \mathbf{R}=+1$
－ 6 extrinsic parameters： 3 rotation angles（Euler theorem）， 3 translation components
－alternative，often used，camerz ropresentations

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$\begin{aligned} \mathbf{C} & \text {－camera position in the word reference frame } \mathcal{F}_{w} \\ \mathbf{r}_{3}^{\top} & \text {－optical axis in the world reference frame } \mathcal{F}_{w}\end{aligned} \quad$ third row of $\mathbf{R}: \mathbf{r}_{3}=\mathbf{R}^{-1}[0,0,1]^{\top}$
－we can save some conversion and computation by noting that $\mathbf{K R}\lceil\mathbf{I} \quad-\mathbf{C}\rceil \underline{\mathbf{X}}=\mathbf{K R}(\mathbf{X}-\mathbf{C})$

Changing the Inner (Image) Reference Frame

The general form of calibration matrix \mathbf{K} includes

- skew angle θ of the digitization raster
- pixel aspect ratio a

$$
\mathbf{K}=\left[\begin{array}{ccc}
a f & -a f \cot \theta & u_{0} \\
0 & f / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right] \quad \text { units: }[f]=\mathrm{px},\left[u_{0}\right]=\mathrm{px},\left[v_{0}\right]=\mathrm{px},[a]=1
$$

$\circledast \mathrm{H} 1 ; 2 \mathrm{pt}$: Decompose \mathbf{K} to simple maps and give $f, a, \theta, u_{0}, v_{0}$ a precise meaning;

Hints:

1. image projects to orthogonal system F^{\perp}, then it maps by skew to F^{\prime}, then by scale $a f, f$ to $F^{\prime \prime}$, then by translation by u_{0}, v_{0} to $F^{\prime \prime \prime}$
2. Skew: Express point \mathbf{x} as

$$
\mathbf{x}=u^{\prime} \mathbf{e}_{u^{\prime}}+v^{\prime} \mathbf{e}_{v^{\prime}}=u^{\perp} \mathbf{e}_{u}^{\perp}+v^{\perp} \mathbf{e}_{v}^{\perp}
$$

e. are unit basis vectors
3. \mathbf{K} maps from F^{\perp} to $F^{\prime \prime \prime}$ as

$$
w^{\prime \prime \prime}\left[u^{\prime \prime \prime}, v^{\prime \prime \prime}, 1\right]^{\top}=\mathbf{K}\left[u^{\perp}, v^{\perp}, 1\right]^{\top}
$$

Thank You

