3D Computer Vision

Radim Šára Martin Matoušek
Center for Machine Perception
Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. October 19, 2021

Open Informatics Master's Course

Application: Counting Steps

- Namesti Miru underground station in Prague

detail around the vanishing point

Result: $[P]=214$ steps (correct answer is 216 steps)
4Mpx camera

Application：Finding the Horizon from Repetitions

p．218］

$$
\left[P_{0} P_{1} P P_{\infty}\right]=\frac{\left|P_{0} P\right|}{\left|P_{1} P_{0}\right|}=2 \quad \Rightarrow \quad x_{\infty}=\frac{x_{0}\left(2 x-x_{1}\right)-x x_{1}}{x+x_{0}-2 x_{1}}
$$

－$x-1 \mathrm{D}$ coordinate along the yellow line，positive in the arrow direction
－could be applied to counting steps $(\rightarrow 48)$ if there was no supporting line
$\circledast \mathrm{P} 1 ; 1$ pt：How high is the camera above the floor？

Homework Problem

$\circledast \mathrm{H} 2$; 3pt: What is the ratio of heights of Building A to Building B ?

- expected: conceptual solution; use notation from this figure
- deadline: LD+2 weeks

Hints

1. What are the interesting properties of line h connecting the top t_{B} of Buiding B with the point m at which the horizon intersects the line p joining the foots f_{A}, f_{B} of both buildings? [1 point]
2. How do we actually get the horizon n_{∞} ? (we do not see it directly, there are some hills there...) [1 point]
3. Give the formula for measuring the length ratio. [formula $=1$ point]

2D Projective Coordinates

Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration
because we can see the calibrating object (vanishing points)

Module III

Computing with a Single Camera

(3.1) Calibration: Internal Camera Parameters from Vanishing Points and Lines
(3.2) Camera Resection: Projection Matrix from 6 Known Points
(3.3Exterior Orientation: Camera Rotation and Translation from 3 Known Points
(3.4) Relative Orientation Problem: Rotation and Translation between Two Point Sets covered by
[1] [H\&Z] Secs: 8.6, 7.1, 22.1
[2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381-395, 1981
[3] [Golub \& van Loan 2013, Sec. 2.5]

Obtaining Vanishing Points and Lines

- orthogonal direction pairs can be collected from multiple images by camera rotation

- vanishing line can be obtained from vanishing points and/or regularities $(\rightarrow 49)$

Camera Calibration from Vanishing Points and Lines

Problem：Given finite vanishing points and／or vanishing lines，compute \mathbf{K}

$$
0=\mathbf{p}_{i j}^{\top} \mathbf{p}_{i k}=\underline{\mathbf{n}}_{i j}^{\top} \mathbf{Q Q}^{\top} \underline{\mathbf{n}}_{i k}=\underline{\mathbf{n}}_{i j}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{i k}
$$

3．orthogonal ray and plane $\mathbf{d}_{k} \| \mathbf{p}_{i j}, k \neq i, j$ normal parallel to optical ray

$$
\begin{aligned}
& \mathbf{p}_{i j} \simeq \mathbf{d}_{k} \Rightarrow \mathbf{Q}^{\top} \underline{\mathbf{n}}_{i j}=\frac{\lambda_{i}}{\mu_{i j}} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{k} \Rightarrow \underline{\mathbf{n}}_{i j}= \varkappa \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{k}=\varkappa \omega \underline{\mathbf{v}}_{k}, \quad \varkappa \neq 0 \\
& \not \text { 价k }
\end{aligned}
$$

－$n_{i j}$ may be constructed from non－orthogonal v_{i} and v_{j} ，e．g．using the cross－ratio
－ω is a symmetric，positive definite 3×3 matrix IAC $=$ Image of Absolute Conic
－equations are quadratic in \mathbf{K} but linear in $\boldsymbol{\omega}$

cont'd

configuration

(3) orthogonal v.p.
(4) orthogonal v.l.
(5) v.p. orthogonal to v.l.
(6) orthogonal image raster $\theta=\pi / 2$
(7) unit aspect $a=1$ when $\theta=\pi / 2$
(8) known principal point $u_{0}=v_{0}=0 \quad \omega_{13}=\omega_{31}=\omega_{23}=\omega_{32}=0$

$$
\begin{array}{cc}
\underline{\mathbf{v}}_{i}^{\top} \boldsymbol{\omega} \underline{\mathbf{v}}_{j}=0 & 1 \\
\underline{\mathbf{n}}_{i j}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{i k}=0 & 1 \\
\underline{\mathbf{n}}_{i j}=\varkappa \boldsymbol{\omega} \underline{\mathbf{v}}_{k} & 2
\end{array}
$$

$\omega_{12}=\omega_{21}=0$ 1
$\omega_{11}-\omega_{22}=0 \quad 1$

- these are homogeneous linear equations for the 5 parameters in ω in the form $\mathbf{D w}=\mathbf{0}$ \varkappa can be eliminated from (5)
- we need at least 5 constraints for full $\boldsymbol{\omega}$ symmetric 3×3
- we get \mathbf{K} from $\boldsymbol{\omega}^{-1}=\mathbf{K} \mathbf{K}^{\top}$ by Choleski decomposition

K =Chol(OM)ne avoids solving an explicit set of quadratic equations for the parameters in K

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta=\pi / 2, a=1$

$$
\boldsymbol{\omega} \simeq\left[\begin{array}{ccc}
1 & 0 & -u_{0} \\
0 & 1 & -v_{0} \\
-u_{0} & -v_{0} & f^{2}+u_{0}^{2}+v_{0}^{2}
\end{array}\right]
$$

Ex 1:
Assuming ORUA and known $m_{0}=\left(u_{0}, v_{0}\right)$, tw finite 0) thogonal vanishing points give f

$$
\underline{\mathbf{v}}_{1}^{\top} \boldsymbol{\omega} \underline{\mathbf{v}}_{2}=0 \quad \Rightarrow \quad f^{2}=\left|\left(\mathbf{v}_{1}-\mathbf{m}_{0}\right)^{\top}\left(\mathbf{v}_{2}-\mathbf{m}_{0}\right)\right|
$$

in this formula, $\mathbf{v}_{i}, \mathbf{m}_{0}$ are Cartesian (not homogeneous)!

Ex 2:

Non-orthogonal vanishing points $\mathbf{v}_{i}, \mathbf{v}_{j}$, known angle $\phi: \cos \phi=\frac{\underline{\mathbf{v}}_{i}^{\top} \omega \underline{\mathbf{v}}_{j}}{\sqrt{\underline{\mathbf{v}}_{i}^{\top} \omega \underline{\mathbf{v}}_{i}} \sqrt{\underline{\mathbf{v}}_{j}^{\top} \omega \underline{\mathbf{v}}_{j}}}$

- leads to polynomial equations
- e.g. ORUA and $u_{0}=v_{0}=0$ gives

$$
\left(f^{2}+\mathbf{v}_{i}^{\top} \mathbf{v}_{j}\right)^{2}=\left(f^{2}+\left\|\mathbf{v}_{i}\right\|^{2}\right) \cdot\left(f^{2}+\left\|\mathbf{v}_{j}\right\|^{2}\right) \cdot \cos ^{2} \phi
$$

-Camera Orientation from Two Finite Vanishing Points

Problem: Given \mathbf{K} and two vanishing points corresponding to two known orthogonal directions $\mathbf{d}_{1}, \mathbf{d}_{2}$, compute camera orientation \mathbf{R} with respect to the plane.

- 3D coordinate system choice, e.g.:

$$
\mathbf{d}_{1}=(1,0,0), \quad \mathbf{d}_{2}=(0,1,0)
$$

- we know that

$$
\begin{array}{r}
\mathbf{d}_{i} \simeq \mathbf{Q}^{-1} \mathbf{v}_{i}=(\mathbf{K R})^{-1} \underline{\mathbf{v}}_{i}=\mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_{i}} \\
\mathbf{R d}_{i} \simeq \underline{\mathbf{w}}_{i} \quad \grave{\imath}=1,2 \quad w_{1}=2^{\mathbf{w}_{i}}
\end{array}
$$

- knowing $\mathbf{d}_{1,2}$ we conclude that $\underline{\mathbf{w}}_{i} /\left\|\underline{\mathbf{w}}_{i}\right\|$ is the i-th column \mathbf{r}_{i} of \mathbf{R}

- the third column is orthogonal:

$$
\mathbf{r}_{3} \simeq \mathbf{r}_{1} \times \mathbf{r}_{2}
$$

$$
\mathbf{R}=\left[\begin{array}{lll}
\frac{\mathbf{w}_{1}}{\left\|\underline{w}_{1}\right\|} & \frac{\mathbf{w}_{2}}{\left\|\underline{\mathbf{w}}_{2}\right\|} & \pm \frac{\mathbf{w}_{1} \times \underline{\mathbf{w}}_{2}}{\left\|\underline{w}_{1} \times \underline{\mathbf{w}}_{2}\right\|}
\end{array}\right]
$$

- in general we have to care about the signs $\pm \underline{\mathbf{w}}_{i}$ (such that $\operatorname{det} \mathbf{R}=1$)

Application：Planar Rectification

Principle：Rotate camera（image plane）parallel to the plane of interest．

$$
\begin{aligned}
& \boldsymbol{w}=H K R[I \\
& \mathbf{m} \simeq K R[\mathbf{I} \\
&-\mathbf{C}] \mathbf{X}]
\end{aligned}
$$

$$
\underline{\underline{\mathbf{m}}}^{\prime} \simeq \mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \underline{\mathbf{x}}
$$

$$
\underline{\mathbf{m}}^{\prime} \simeq \mathbf{K}(\mathbf{K R})^{-1} \underline{\mathbf{m}}=\mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1} \underline{\mathbf{m}}=\mathbf{H} \underline{\mathbf{m}}
$$

－ \mathbf{H} is the rectifying homography
－both \mathbf{K} and \mathbf{R} can be calibrated from two finite vanishing points assuming ORUA $\rightarrow 57$
－not possible when one of them is（or both are）infinite
－without ORUA we would need 4 additional views to calibrate \mathbf{K} as on $\rightarrow 54$

-Camera Resection

Camera calibration and orientation from a known set of $k \geq 6$ reference points and their images $\left.\left\{\overline{(X},, m_{i}\right)\right\}_{i=1}^{6}$.

- X_{i} are considered exact
- m_{i} is a measurement subject to detection error

$$
\mathbf{m}_{i}=\hat{\mathbf{m}}_{i}+\mathbf{e}_{i} \quad \text { Cartesian }
$$

- where $\lambda_{i} \underline{\underline{\mathbf{m}}}_{i}=\mathbf{P} \underline{\mathbf{X}}_{i}$

Resection Targets

calibration chart

resection target with translation stage

automatic calibration point detection
－target translated at least once
－by a calibrated（known）translation
－X_{i} point locations looked up in a table based on their code

-The Minimal Problem for Camera Resection

Problem: Given $k=6$ corresponding pairs $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{k}$, find \mathbf{P}

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{P} \underline{\mathbf{X}}_{i}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right] \quad \begin{aligned}
& \underline{\mathbf{X}}_{i}=\left(x_{i}, y_{i}, z_{i}, 1\right), \quad i=1,2, \ldots, k, k=6 \\
& \\
& \\
& \text { easily modifiable for infinite points } X_{i} \text { but be aware of } \rightarrow 64
\end{aligned}
$$

expanded:

$$
\lambda_{i} u_{i}=\mathbf{q}_{1}^{\top} \mathbf{X}_{i}+q_{14}, \quad \lambda_{i} v_{i}=\mathbf{q}_{2}^{\top} \mathbf{X}_{i}+q_{24}, \quad \lambda_{i}=\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}
$$

after elimination of $\lambda_{i}: \quad\left(\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}\right) u_{i}=\mathbf{q}_{1}^{\top} \mathbf{X}_{i}+q_{14}, \quad\left(\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}\right) v_{i}=\mathbf{q}_{2}^{\top} \mathbf{X}_{i}+q_{24}$
Then

$$
\mathbf{A} \mathbf{q}=\left[\begin{array}{cccccc}
\mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1} \mathbf{X}_{1}^{\top} & -u_{1} \tag{9}\\
\mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1} \mathbf{X}_{1}^{\top} & -v_{1} \\
\vdots & & & & & \vdots \\
\mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k} \mathbf{X}_{k}^{\top} & -u_{k} \\
\mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -\mathbf{U}_{k}^{\top} \mathbf{X}_{k}^{\top} & -v_{k} k
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{q}_{1} \\
q_{14} \\
\mathbf{q}_{2} \\
q_{24} \\
\mathbf{q}_{3} \\
q_{34}
\end{array}\right]=\mathbf{0}
$$

- we need 11 indepedent parameters for \mathbf{P}
- $\mathbf{A} \in \mathbb{R}^{2 k, 12}, \mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give $\operatorname{rank} \mathbf{A}=12$ and there is no (non-trivial) null space
- drop one row to get rank-11 matrix, then the basis vector of the null space of \mathbf{A} gives q

－The Jack－Knife Solution for $k=6$

－given the 6 correspondences，we have 12 equations for the 11 parameters
－can we use all the information present in the 6 points？

Jack－knife estimation

1．$n:=0$
2．for $i=1,2, \ldots, 2 k$ do
a）delete i－th row from \mathbf{A} ，this gives \mathbf{A}_{i}
b）if dim null $\mathbf{A}_{i}>1$ continue with the next i

c）$n:=n+1$
d）compute the right null－space \mathbf{q}_{i} of $\mathbf{A}_{i} \quad$ e．g．by＇economy－size＇SVD
e）$\hat{\mathbf{q}}_{i}:=\mathbf{q}_{i}$ normalized to $q_{34}=1$ and dimension－reduced assuming finite cam．with $P_{3,4}=1$
3．from all n vectors $\hat{\mathbf{q}}_{i}$ collected in Step 1d compute

$$
\mathbf{q}=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{q}}_{i}, \quad \operatorname{var}[\mathbf{q}]=\frac{n-1}{n} \operatorname{diag} \sum_{i=1}^{n}\left(\hat{\mathbf{q}}_{i}-\mathbf{q}\right)\left(\hat{\mathbf{q}}_{i}-\mathbf{q}\right)^{\top} \quad \begin{aligned}
& \text { regular for } n \geq 11 \\
& \text { variance of the sample mean }
\end{aligned}
$$

－have a solution + an error estimate，per individual elements of \mathbf{P}（except P_{34} ）
－at least 5 points must be in a general position $(\rightarrow 64)$
－large error indicates near degeneracy
－computation not efficient with $k>6$ points，needs $\binom{2 k}{11}$ draws，e．g．$k=7 \Rightarrow 364$ draws
－better error estimation method：decompose \mathbf{P}_{i} to $\mathbf{K}_{i}, \mathbf{R}_{i}, \mathbf{t}_{i}(\rightarrow 33)$ ，represent \mathbf{R}_{i} with 3 parameters （e．g．Euler angles，or in exponential map representation $\rightarrow 136$ ）and compute the errors for the parameters
－even better：use the $\mathrm{SE}(3)$ Lie group for $\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$ and average its Lie－algebraic representations

－Degenerate（Critical）Configurations for Camera Resection

Let $\mathcal{X}=\left\{X_{i} ; i=1, \ldots\right\}$ be a set of points and $\mathbf{P}_{1} \not \not \mathbf{P}_{j}$ be two regular（rank－3）cameras． Then two configurations $\left(\mathbf{P}_{1}, \mathcal{X}\right)$ and $\left(\mathbf{P}_{j}, \mathcal{X}\right)$ are image－equivalent if

$$
\mathbf{P}_{1} \underline{\mathbf{X}}_{i} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i} \quad \text { for all } \quad X_{i} \in \mathcal{X}
$$

there is a non－trivial set of other cameras that see the same image

Case 4

Results

－importantly：If all calibration points $X_{i} \in \mathcal{X}$ lie on a plane \varkappa then camera resection is non－unique and all image－equivalent camera centers lie on a spatial line \mathcal{C} with the $C_{\infty}=\varkappa \cap \mathcal{C}$ excluded
this also means we cannot resect if all X_{i} are infinite
－and more：by adding points $X_{i} \in \mathcal{X}$ to \mathcal{C} we gain nothing
－there are additional image－equivalent configurations，see next

Note that if \mathbf{Q}, \mathbf{T} are suitable homographies then $\mathbf{P}_{1} \simeq \mathbf{Q} \mathbf{P}_{0} \mathbf{T}$ ，where \mathbf{P}_{0} is canonical and the analysis can be made with $\hat{\mathbf{P}}_{j} \simeq \mathbf{Q}^{-1} \mathbf{P}_{j}$

$$
\mathbf{P}_{0} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \simeq \hat{\mathbf{P}}_{j} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \quad \text { for all } \quad Y_{i} \in \mathcal{Y}
$$

3D Computer Vision：III．Computing with a Single Camera（p．64／190）っの® R．Šára，CMP；rev．19－Oct－2021 ब而日

cont'd (all cases)

Case 3

- points lie on three optical rays or one optical ray and one optical plane
- cameras C_{1}, C_{2} co-located at point \mathcal{C}
- Case 5: camera sees 3 isolated point images
- Case 6: cam. sees a line of points and an isolated point
- points lie on a line \mathcal{C} and

1. on two lines meeting \mathcal{C} at $C_{\infty}, C_{\infty}^{\prime}$
2. or on a plane meeting \mathcal{C} at C_{∞}

- cameras lie on a line $\mathcal{C} \backslash\left\{C_{\infty}, C_{\infty}^{\prime}\right\}$
- Case 3: camera sees 2 lines of points
- Case 4: dangerous!

Case 2

- points lie on a planar conic \mathcal{C} and an additional line meeting \mathcal{C} at C_{∞}
- cameras lie on $\mathcal{C} \backslash\left\{C_{\infty}\right\}$ not necessarily an ellipse
- Case 2: camera sees 2 lines of points

Case 1

- points and cameras all lie on a twisted cubic \mathcal{C}
- Case 1: camera sees points on a conic dangerous but unlikely to occur

-Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of $\underline{3}$ reference Points. Problem: Given \mathbf{K} and three corresponding pairs $\left\{\left(m_{i}, X_{i}\right)\right\}_{i=1}^{3}$, find \mathbf{R}, \mathbf{C} by solving

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{K R}\left(\mathbf{X}_{i}-\mathbf{C}\right), \quad i=1,2,3 \quad \mathbf{X}_{i} \text { Cartesian }
$$

1. Transform $\underline{\mathbf{v}}_{i} \stackrel{\text { def }}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_{i}$. Then

$$
\begin{equation*}
\lambda_{i} \underline{\mathbf{v}}_{i}=\mathbf{R}\left(\mathbf{X}_{i}-\mathbf{C}\right) \tag{10}
\end{equation*}
$$

2. If there was no rotation in (10), the situation would look like this

3. and we could shoot 3 lines from the given points \mathbf{X}_{i} in given directions $\underline{\mathbf{v}}_{i}$ to get \mathbf{C}
4. given \mathbf{C} we solve (10) for λ_{i}, \mathbf{R}

P3P cont'd

If there is rotation \mathbf{R}

1. Eliminate \mathbf{R} by taking rotation preserves length: $\|\mathbf{R x}\|=\|\mathbf{x}\|$

$$
\begin{equation*}
\left|\lambda_{i}\right| \cdot\left\|\underline{\mathbf{v}}_{i}\right\|=\left\|\mathbf{X}_{i}-\mathbf{C}\right\| \stackrel{\text { def }}{=} z_{i} \tag{11}
\end{equation*}
$$

2. Consider only angles among $\underline{\mathbf{v}}_{i}$ and apply Cosine Law per triangle $\left(\mathbf{C}, \mathbf{X}_{i}, \mathbf{X}_{j}\right) i, j=1,2,3, i \neq j$

$$
\begin{gathered}
d_{i j}^{2}=z_{i}^{2}+z_{j}^{2}-2 z_{i} z_{j} c_{i j} \\
z_{i}=\left\|\mathbf{X}_{i}-\mathbf{C}\right\|, \quad d_{i j}=\left\|\mathbf{X}_{j}-\mathbf{X}_{i}\right\|, \quad c_{i j}=\cos \left(\angle \underline{\mathbf{v}}_{i} \underline{\mathbf{v}}_{j}\right)
\end{gathered}
$$

4. Solve system of 3 quadratic eqs in 3 unknowns z_{i}

[Fischler \& Bolles, 1981] there may be no real root; there are up to 4 solutions that cannot be ignored
(verify on additional points)
5. Compute \mathbf{C} by trilateration (3-sphere intersection) from \mathbf{X}_{i} and z_{i}; then λ_{i} from (11) and \mathbf{R} from (10)

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)

Degenerate (Critical) Configurations for Exterior Orientation

unstable solution

- center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_{i}
unstable: a small change of X_{i} results in a large change of C can be detected by error propagation
degenerate
- camera C is coplanar with points $\left(X_{1}, X_{2}, X_{3}\right)$ but is not on the circumscribed circle of $\left(X_{1}, X_{2}, X_{3}\right)$
camera sees points on a line

no solution

1. C cocyclic with $\left(X_{1}, X_{2}, X_{3}\right)$ camera sees points on a line

- additional critical configurations depend on the quadratic equations solver
[Haralick et al. IJCV 1994]

Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world－img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	62
exterior orientation	$\mathbf{K}, 3$ world－img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	66
relative orientation	3 world－world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, t	70

－camera resection and exterior orientation are similar problems in a sense：
－we do resectioning when our camera is uncalibrated
－we do orientation when our camera is calibrated
－relative orientation involves no camera（see next）
－more problems to come

The Relative Orientation Problem

Problem：Given point triples $\left(X_{1}, X_{2}, X_{3}\right)$ and $\left(Y_{1}, Y_{2}, Y_{3}\right)$ in a general position in \mathbf{R}^{3} such that the correspondence $X_{i} \leftrightarrow Y_{i}$ is known，determine the relative orientation（ \mathbf{R}, \mathbf{t} ） that maps \mathbf{X}_{i} to \mathbf{Y}_{i} ，i．e．

$$
\mathbf{Y}_{i}=\mathbf{R} \mathbf{X}_{i}+\mathbf{t}, \quad i=1,2,3
$$

Applies to：
－3D scanners
－partial reconstructions from different viewpoints
Obs：Let the centroid be $\overline{\mathbf{X}}=\frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\overline{\mathbf{Y}}$ ．Then

$$
\overline{\mathbf{Y}}=\mathbf{R} \overline{\mathbf{X}}+\mathbf{t}
$$

Therefore

$$
\mathbf{Z}_{i} \stackrel{\text { def }}{=}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)=\mathbf{R}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \stackrel{\text { def }}{=} \mathbf{R} \mathbf{W}_{i}
$$

If all dot products are equal， $\mathbf{Z}_{i}^{\top} \mathbf{Z}_{j}=\mathbf{W}_{i}^{\top} \mathbf{W}_{j}$ for $i, j=1,2,3$ ，we have

$$
\mathbf{R}^{*}=\left[\begin{array}{lll}
\mathbf{W}_{1} & \mathbf{W}_{2} & \mathbf{W}_{3}
\end{array}\right]^{-1}\left[\begin{array}{lll}
\mathbf{Z}_{1} & \mathbf{Z}_{2} & \mathbf{Z}_{3}
\end{array}\right]
$$

Otherwise（in practice）we setup a minimization problem

$$
\begin{gathered}
\mathbf{R}^{*}=\arg \min _{\mathbf{R}} \sum_{i=1}^{3}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2} \quad \text { s.t. } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \quad \operatorname{det} \mathbf{R}=1 \\
\arg \min _{\mathbf{R}} \sum_{i}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2}=\arg \min _{\mathbf{R}} \sum_{i}\left(\left\|\mathbf{Z}_{i}\right\|^{2}-2 \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}+\left\|\mathbf{W}_{i}\right\|^{2}\right)=\cdots \\
\cdots=\arg \max _{\mathbf{R}} \sum_{r} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}
\end{gathered}
$$

cont＇d（What is Linear Algebra Telling Us？）

Obs 1：Let $\mathbf{A}: \mathbf{B}=\sum_{i, j} a_{i j} b_{i j}$ be the dot－product（Frobenius inner product）over real matrices．Then

$$
\mathbf{A}: \mathbf{B}=\mathbf{B}: \mathbf{A}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{B}\right)
$$

Obs 2：（cyclic property for matrix trace）

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{C A B})
$$

Obs 3：（ $\mathbf{Z}_{i}, \mathbf{W}_{i}$ are vectors）

$$
\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\operatorname{tr}\left(\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}\right)=\operatorname{tr}\left(\mathbf{W}_{i} \mathbf{Z}_{i}^{\top} \mathbf{R}\right)=\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right): \mathbf{R}=\mathbf{R}:\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right)
$$

Let the SVD be

$$
\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top} \stackrel{\text { def }}{=} \mathbf{M}=\mathbf{U D} \mathbf{V}^{\top}
$$

Then

$$
\mathbf{R}: \mathbf{M}=\mathbf{R}:\left(\mathbf{U D V}^{\top}\right)=\operatorname{tr}\left(\mathbf{R}^{\top} \mathbf{U D} \mathbf{V}^{\top}\right)=\operatorname{tr}\left(\mathbf{V}^{\top} \mathbf{R}^{\top} \mathbf{U D}\right)=\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

cont'd: The Algorithm

We are solving

$$
\mathbf{R}^{*}=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\arg \max _{\mathbf{R}}\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

A particular solution is found as follows:

- $\mathbf{U}^{\top} \mathbf{R V}$ must be (1) orthogonal, and most similar to (2) diagonal, (3) positive definite
- Since U, V are orthogonal matrices then the solution to the problem is among $\mathbf{R}^{*}=\mathbf{U S V}^{\top}$, where \mathbf{S} is diagonal and orthogonal, i.e. one of

$$
\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)
$$

- $\mathbf{U}^{\top} \mathbf{V}$ is not necessarily positive definite
- We choose \mathbf{S} so that $\left(\mathbf{R}^{*}\right)^{\top} \mathbf{R}^{*}=\mathbf{I}$

Alg:

1. Compute matrix $\mathbf{M}=\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}$.
2. Compute SVD $\mathbf{M}=\mathbf{U D V}{ }^{\top}$.
3. Compute all $\mathbf{R}_{k}=\mathbf{U} \mathbf{S}_{k} \mathbf{V}^{\top}$ that give $\mathbf{R}_{k}^{\top} \mathbf{R}_{k}=\mathbf{I}$.
4. Compute $\mathbf{t}_{k}=\overline{\mathbf{Y}}-\mathbf{R}_{k} \overline{\mathbf{X}}$.

- The algorithm can be used for more than 3 points
- Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
- The P3P problem is very similar but not identical

Thank You

