
Game theory - lab 2

David Milec

Czech Technical University in Prague

milecdav@fel.cvut.cz

December 13, 2021

David Milec (CTU) GT - lab 2 December 13, 2021 1 / 20



Overview

1 Patrolling Security Games

2 Optimization on Patrolling Graph

3 Patrolling around Polygon

David Milec (CTU) GT - lab 2 December 13, 2021 2 / 20



Patrolling Security Game

Two-player multi-stage game. Imperfect information, infinite horizon
and simultaneous moves.

Defender moves in a graph by move(i) action.

Attacker can wait or attack a target by enter(t).

enter(t) blocks attacker for τ(t) moves.

If defender visits t in that time he captures him and game ends by a
capture. If not, the game ends by successful attack. The game can
also end with no attack.

David Milec (CTU) GT - lab 2 December 13, 2021 3 / 20



Patrolling Security Game

Possible outcomes:

Capture: attacker receives penalty −ε and defender keeps all utilities
for targets →

∑
i∈T Vd(i)

No attack: attacker gets 0 and defender keeps all utilities for targets
→

∑
i∈T Vd(i)

Successful attack at t: attacker gets Va(t) and defender loses
utility at t →

∑
i∈T\t Vd(i)

David Milec (CTU) GT - lab 2 December 13, 2021 4 / 20



Patrolling Strategy

Defender’s patrolling strategy
can be deterministic or
probabilistic.

Deterministic patrolling strategy
is described by fixed sequence of
nodes that the defender
repeatedly visits.

What is the optimal patrolling
sequence for the example if the
defender starts at 01?

David Milec (CTU) GT - lab 2 December 13, 2021 5 / 20



Patrolling Strategy

One optimal sequence is (01,
02, 03, 04, 05, 06, 07, 06, 05,
04, 03, 02, 01, 10, 11, 10, 01)

We can see that the defender
periodically visits every target in
less than τ(t) steps.

How to encode the correctness
to constraints?

David Milec (CTU) GT - lab 2 December 13, 2021 6 / 20



Confirming Deterministic Strategy

Let σ be the sequence. Oi (j) gives index to the sequence when target i
was visited for the jth time and oi is number of visits of target i in the
sequence.

σ(1) = σ(s) (1)

oi ≥ 1 ∀i ∈ T (2)

adjacent(σ(j − 1), σ(j)) = 1 ∀j ∈ {2, 3, · · · , s} (3)

Oi (k + 1)− Oi (k)− 1 ≤ τ(i) ∀i ∈ T ,∀k ∈ {1, 2, · · · , oi − 1} (4)

Oi (1) + s − Oi (oi )− 2 ≤ τ(i) ∀i ∈ T (5)

(6)

Check if it works for our sequence (01, 02, 03, 04, 05, 06, 07, 06, 05, 04,
03, 02, 01, 10, 11, 10, 01). (targets are 03, 07, 11 with τ(03) = 8,
τ(07) = 23, τ(11) = 17)

David Milec (CTU) GT - lab 2 December 13, 2021 7 / 20



Checking the Sequence

Equation one is easy to check and we start and end by 01. oi of all the
targets is at least 1 and we know the vertices are adjacent.
i Oi (1) Oi (2) Oi (3) oi

01 1 13 17 3

02 2 12 2

03 3 11 2

04 4 10 2

05 5 9 2

06 6 8 2

07 7 1

08 0

09 0

10 14 16 2

11 15 1

Equation 4:
Target 03:
11 - 3 - 1 = 7 ≤ 8 X

Equation 5:
Target 03:
3 + 17 - 11 - 2 = 7 ≤ 8 X
Target 07:
7 + 17 - 7 - 2 = 15 ≤ 23 X
Target 11:
15 + 17 - 15 - 2 = 15 ≤ 17 X

David Milec (CTU) GT - lab 2 December 13, 2021 8 / 20



Computing the Strategy

To construct the solution
from scratch, we would
need to solve the
equations for all possible
sequence lengths and oi ,
which is infeasible even
for small problems.

We need to do search
with backtracking guided
by heuristic. For every
node in T or until we
find a solution create a
one size sequence from
it, set j = 2 and execute
following function
RECURSIVECALL(σ, j):

if σ(i) = σ(j − 1) and Equation 2 holds then
if Equation 5 holds then

return σ
else

return FAILURE
end if

else
Fj = FWD(σ,j)
for all the i in Fj do

σ(j) = i
σ′ = RECURSIVECALL(σ, j+1)
if σ′ not FAILURE then

return σ′

end if
end for
return FAILURE

end if

David Milec (CTU) GT - lab 2 December 13, 2021 9 / 20



Computing the Strategy

First if makes sure
Equations 1, 2 hold and next
if checks Eq. 5 and returns
solution, otherwise we
backtrack.

We get to the else of the
first if when the sequence is
not a cycle or there are some
unvisited targets. We call
FWD which returns possible
next nodes (making sure
Equations 3 and 4 hold).
Then we try the assignment
of the variable and continue
with the recursion.

1

if σ(i) = σ(j − 1) and Equation 2 holds
then

if Equation 5 holds then
return σ

else
return FAILURE

end if
else

Fj = FWD(σ,j)
for all the i in Fj do

σ(j) = i
σ′ = RECURSIVECALL(σ, j+1)
if σ′ not FAILURE then

return σ′

end if
end for
return FAILURE

end if
1Details https://core.ac.uk/download/pdf/55221143.pdf

David Milec (CTU) GT - lab 2 December 13, 2021 10 / 20



Reducing the size of the patrolling graph

We can reduce the
computation problem by
first thinking about what
we need for optimal
strategy and if we can
remove some nodes.

Generally, which nodes
can we remove?

Given following
patrolling problem,
remove unnecessary
nodes and edges from
the graph.

T1

T2

T4 T3

David Milec (CTU) GT - lab 2 December 13, 2021 11 / 20



Example of reduced graph

T1

T2

T3T4

David Milec (CTU) GT - lab 2 December 13, 2021 12 / 20



Patrolling around Polygon Description

Polygon with some fence and we
have n robots to guard it

Robots go around the fence and
attacker picks a spot on the
fence and attacks, going
through the fence takes him
some time t

David Milec (CTU) GT - lab 2 December 13, 2021 13 / 20



Patrolling around Polygon Observations

We want to maximize
probability we catch the
adversary if he attacks on the
worst possible point for us. (All
the points on the fence are the
same so the adversary has no
incentive to go for specific
point)

The probability is maximized if
the robots are distributed
uniformly along the fence, they
all face the same direction and
move at the same speed.

David Milec (CTU) GT - lab 2 December 13, 2021 14 / 20



Patrolling around Polygon Approach

We want the robots to go as
fast as they can to be the most
effective. Instead of maintaining
the same speed, we measure
how long the robot takes to go
around and split the polygon to
uniform segments based on time
spent in each segment.

We place the robots uniformly
based on the segments.

David Milec (CTU) GT - lab 2 December 13, 2021 15 / 20



Patrolling around Polygon Cases

We look at segments between two
robots. Based on the time t required
to breach the fence we can have
three cases:

We can always catch every
intruder if we simply circle
around.

We can never catch smart
intruder.

We have non-zero probability to
catch smart intruder when we
continue with probability p and
turn around with probability
1− p. Turning takes time τ .

David Milec (CTU) GT - lab 2 December 13, 2021 16 / 20



Patrolling around Polygon Converting to Graphical Model

We want to compute
probabilities that robots reach
each segment in at most t steps.

Reaching Si is equivalent to
starting in Sw

i and reaching Sdt .

We want the probability of
reaching Sdt from each Sw

i .

David Milec (CTU) GT - lab 2 December 13, 2021 17 / 20



Patrolling around Polygon Computing p

Now we construct a transition
matrix M from the graphical
model.

We do Mt to get transition
probabilities after t steps.

And we check the probabilities
of transitions from each Sw

i to
Sdt .

David Milec (CTU) GT - lab 2 December 13, 2021 18 / 20



Patrolling around Polygon Computing p

Final step is to compute the probabilities of stopping an attack for selected
values of p. Since we are defending against rational opponent we minimize
over the segments for each p. And select p that maximizes the minimum.

David Milec (CTU) GT - lab 2 December 13, 2021 19 / 20



The End

David Milec (CTU) GT - lab 2 December 13, 2021 20 / 20


	Patrolling Security Games
	Optimization on Patrolling Graph
	Patrolling around Polygon

