Mathematical Formulation of IKT

$$
\begin{gathered}
M=M_{1}^{0} M_{2}^{1} M_{3}^{2} M_{4}^{3} M_{5}^{4} M_{6}^{5} \\
\underbrace{\left[\begin{array}{cc}
\mathbf{R} & \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\substack{\text { pose of the } \\
\text { end effector }}}=\prod_{i=1}^{6} M_{i}^{i-1}(\theta_{i}+\underbrace{\theta_{i_{\text {offse }}}, d_{i}, a_{i}, \alpha_{i}}_{\text {DH parameters }}) \\
{\left[\begin{array}{ccc}
f_{1} & \ldots & f_{4} \\
\vdots & \ddots & \vdots \\
f_{9} & \ldots & f_{12} \\
0 & \ldots & 0
\end{array}\right]=\prod_{i=1}^{6} M_{i}^{i-1}\left(\theta_{i}+\theta_{i_{\text {offset }}}, d_{i}, a_{i}, \alpha_{i}\right)-\left[\begin{array}{ll}
\mathbf{R} & \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\mathbf{O}}
\end{gathered}
$$

Symbolic formulation

Every matrix M_{i}^{i-1} can be decomposed as

$$
\left[\begin{array}{cccc}
\cos \left(\theta_{i}+\theta_{i_{\text {offset }}}\right) & -\sin \left(\theta_{i}+\theta_{i_{\text {offset }}}\right) & 0 & 0 \\
\sin \left(\theta_{i}+\theta_{i_{\text {offset }}}\right) & \cos \left(\theta_{i}+\theta_{i_{\text {offset }}}\right) & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & \cos \alpha_{i} & -\sin \alpha_{i} & 0 \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

New variables:

$$
c_{i}=\cos \left(\theta_{i}+\theta_{i_{\text {offset }}}\right), \quad s_{i}=\sin \left(\theta_{i}+\theta_{i_{\text {offset }}}\right)
$$

New polynomial equations:

$$
\begin{gathered}
\prod_{i=1}^{6} M_{i}^{i-1}\left(c_{i}, s_{i}, d_{i}, a_{i}, \alpha_{i}\right)-\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\mathbf{O} \\
c_{i}^{2}+s_{i}^{2}=1, \quad i=1, \ldots, 6
\end{gathered}
$$

Compute θ_{i} from c_{i} and s_{i} :

$$
\theta_{i}=\operatorname{atan} 2\left(s_{i}, c_{i}\right)-\theta_{i_{\text {offset }}}
$$

Simplified equations

Let's look at the inverse matrix $\left(M_{i}^{i-1}\right)^{-1}$

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -a_{i} \\
0 & \cos \alpha_{i} & \sin \alpha_{i} & 0 \\
0 & -\sin \alpha_{i} & \cos \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
c_{i} & s_{i} & 0 & 0 \\
-s_{i} & c_{i} & 0 & 0 \\
0 & 0 & 1 & -d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Since it is polynomial in c_{i} and s_{i}, thus the old polynomial equations of IKT of degree 6 in c_{i} and s_{i} can be simplified to the following ones of degree 3 :

$$
\begin{gathered}
\prod_{i=4}^{6} M_{i}^{i-1}\left(c_{i}, s_{i}, d_{i}, a_{i}, \alpha_{i}\right)-\left(\prod_{i=1}^{3} M_{i}^{i-1}\left(c_{i}, s_{i}, d_{i}, a_{i}, \alpha_{i}\right)\right)^{-1}\left[\begin{array}{ll}
\mathbb{R} & \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\mathbf{O} \\
c_{i}^{2}+s_{i}^{2}=1, \quad i=1, \ldots, 6
\end{gathered}
$$

Solvability of equations

(1) Groebner Basis computation is done in exact arithmetics over rational numbers and therefore input must be provided in rational numbers.
(2) At the same time, the input must satisfy all identities on sines, cosines and rotations, otherwise the systems would have no solution.
That's why,
(1) the parameters d_{i}, a_{i} must be given as Fraction numbers, the translation \mathbf{t} must be given as a vector with Fraction numbers
(2) $\cos \alpha_{i}$ and $\sin \alpha_{i}$ must be given as a tuple of Fraction numbers such that the sum of their squares is exactly 1
(3) the rotation matrix \mathbf{R} must be given as a matrix with Fraction numbers such that $\mathbf{R}^{\top} \mathbf{R}=\mathbf{I}$ and $\operatorname{det} \mathbf{R}=1$ hold exactly.

Rational approximation of a floating point number

Input: floating point number n, positive tolerance tol
Output: fraction number f such that $|f-n|<t o l$ Steps:
(1) If $t o l \geq 1$: create a rational approximation f of n as:

$$
f=\frac{\lfloor n\rfloor}{1}
$$

(2) If $t o l<1$: represent tol in scientific notation and take the exponent e, i.e.

$$
\text { tol }=m \times 10^{e}, \quad m \in[1,10), e \in \mathbb{Z}_{<0}
$$

and create a rational approximation f of n as:

$$
f=\frac{\left\lfloor n \cdot 10^{-e}\right\rfloor}{10^{-e}}
$$

Rational approximation of a floating point number

Example

Let the floating point number be given by

$$
n=10.123456789
$$

and the tolerance of the rational approximation be given by another floating point number

$$
\text { tol }=0.000025932=2.5932 \times 10^{-5} \Rightarrow e=-5
$$

The fraction which approximates n is

$$
\begin{gathered}
f=\frac{\left\lfloor n \cdot 10^{-e}\right\rfloor}{10^{-e}}=\frac{\left\lfloor 10.123456789 \cdot 10^{5}\right\rfloor}{10^{5}}=\frac{1012345}{10^{5}} \\
|f-n|=|10.12345-10.123456789|=0.000006789<\mathrm{tol}
\end{gathered}
$$

Exact sine and cosine

Rational parametrization of the unit circle:

$$
\cos \theta=\frac{1-t^{2}}{1+t^{2}}, \quad \sin \theta=\frac{2 t}{1+t^{2}}, \quad t \in \mathbb{Q}
$$

Trigonometric meaning of t :

$$
\tan \left(\frac{\theta}{2}\right)=\frac{1-\cos \theta}{\sin \theta}=\frac{1-\frac{1-t^{2}}{1+t^{2}}}{\frac{2 t}{1+t^{2}}}=\frac{2 t^{2}}{2 t}=t
$$

Exact sine and cosine

Input: floating point number $\theta \in[-\pi, \pi]$, positive tolerance tol Output: fraction numbers c, s such that

$$
c^{2}+s^{2}=1 \text { (exactly) } \quad \& \quad \exists k \in \mathbb{Z}:|\operatorname{atan} 2(s, c)-\theta+2 k \pi|<\text { tol }
$$

Steps:

(1) If $|\theta-\pi|<t o l$ or $|\theta+\pi|<t o l$, then return

$$
c=-1, \quad s=0
$$

(2) Compute tangent of $\frac{\theta}{2}$ and approximate it by rational fraction:

$$
t=\text { rat_approx }\left(\tan \left(\frac{\theta}{2}\right), \frac{t o l}{10}\right)
$$

(3) Compute cosine and sine corresponding to t :

$$
c=\frac{1-t^{2}}{1+t^{2}}, \quad s=\frac{2 t}{1+t^{2}}
$$

Exact sine and cosine

Example

Let the angle and the tolerance be given by

$$
\theta=1.2345, \quad \text { tol }=0.0023
$$

The rational approximation of $\tan \left(\frac{\theta}{2}\right)$ is given by

$$
\begin{gathered}
t=\text { rat_approx }\left(\tan \left(\frac{\theta}{2}\right), \text { tol }\right)=\text { rat_approx }(0.709766,0.0023)= \\
=\frac{\left\lfloor 0.709766 \cdot 10^{3}\right\rfloor}{10^{3}}=\frac{709}{1000} \\
c=\frac{1-t^{2}}{1+t^{2}}=\frac{497319}{1502681}, \quad s=\frac{2 t}{1+t^{2}}=\frac{1418000}{1502681} \\
|\operatorname{atan} 2(s, c)-\theta|=|1.23348-1.2345|=0.00102<\text { tol }
\end{gathered}
$$

Exact 3×3 rotation matrix

Parametrization of exact 3×3 rotation matrices:

$$
\begin{gathered}
\mathbf{R}=\frac{1}{\sum_{i=1}^{4} q_{i}^{2}}\left[\begin{array}{ccc}
q_{1}^{2}+q_{2}^{2}-q_{3}^{2}-q_{4}^{2} & 2\left(q_{2} q_{3}-q_{1} q_{4}\right) & 2\left(q_{2} q_{4}+q_{1} q_{3}\right) \\
2\left(q_{2} q_{3}+q_{1} q_{4}\right) & q_{1}^{2}-q_{2}^{2}+q_{3}^{2}-q_{4}^{2} & 2\left(q_{3} q_{4}-q_{1} q_{2}\right) \\
2\left(q_{2} q_{4}-q_{1} q_{3}\right) & 2\left(q_{3} q_{4}+q_{1} q_{2}\right) & q_{1}^{2}-q_{2}^{2}-q_{3}^{2}+q_{4}^{2}
\end{array}\right], \\
q_{1}, q_{2}, q_{3}, q_{4} \in \mathbb{Q}
\end{gathered}
$$

In the next slide we will use the function q2r which is defined by the above formula.

Exact 3×3 rotation matrix

Algorithm 1: Exact 3×3 rotation matrix
Input: vector of float numbers $\mathbf{q}=\left[\begin{array}{llll}q_{1} & q_{2} & q_{3} & q_{4}\end{array}\right]^{\top}$ with $\|\mathbf{q}\| \approx 1$, positive tolerance tol
Output: 3×3 matrix \mathbf{R} with fraction numbers such that

$$
\mathbf{R}^{\top} \mathbf{R}=\mathrm{I}, \quad \operatorname{det} \mathbf{R}=1 \text { (exactly) } \quad \& \quad\|\mathbf{R}-\mathrm{q} 2 \mathrm{r}(q)\|_{\mathrm{F}}<t o l
$$

1 tol $_{q} \leftarrow$ tol
2 while $T R U E$ do

3	$q_{\text {rat }} \leftarrow\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$		
4	for $i \leftarrow 1$ to 4 do		
5	- $q_{\text {rat }}[i] \leftarrow$ rat_approx $\left(q_{i}\right.$, tol $\left.{ }_{q}\right)$		
6	$\mathbf{R} \leftarrow \mathrm{q} 2 \mathrm{r}\left(q_{r a t}\right)$		
7	if $\\|\mathbf{R}-\mathrm{q} 2 \mathrm{r}(q)\\|_{\mathrm{F}}<$ tol then		
8	\square return R		
9	else		
10	$\left\llcorner\right.$ tol $_{q} \leftarrow \frac{\text { tol } l_{q}}{10}$		

Exact 3×3 rotation matrix

Example

Let the quaternion and the tolerance be given by

$$
\mathbf{q}=\left[\begin{array}{llll}
0.748 & 0.654 & 0.108 & 0.012
\end{array}\right], \quad \text { tol }=0.0011
$$

The output of the algorithm exact_rot gives the exact rotation matrix

$$
\mathbf{R}=\left[\begin{array}{rrr}
\frac{243853}{249757} & \frac{30828}{24957} & \frac{44316}{24955} \\
\frac{39804}{249757} & \frac{35827}{24957} & -\frac{243948}{249757} \\
-\frac{34688}{249757} & \frac{245244}{249757} & \frac{30067}{249757}
\end{array}\right]
$$

which comes from the (non-unit) rational quaternion

$$
q_{\text {rat }}=\left[\begin{array}{llll}
\frac{187}{250} & \frac{327}{500} & \frac{27}{250} & \frac{3}{250}
\end{array}\right]
$$

Reduced lexicographic groebner basis of IKT equations

IKT equations:

$$
\begin{gathered}
\prod_{i=4}^{6} M_{i}^{i-1}\left(c_{i}, s_{i}, d_{i}, a_{i}, \alpha_{i}\right)-\left(\prod_{i=1}^{3} M_{i}^{i-1}\left(c_{i}, s_{i}, d_{i}, a_{i}, \alpha_{i}\right)\right)^{-1}\left[\begin{array}{ll}
\mathbf{R} & \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\mathbf{O} \\
c_{i}{ }^{2}+s_{i}{ }^{2}=1, \quad i=1, \ldots, 6
\end{gathered}
$$

Let's order the variables as follows:

$$
c_{1}>s_{1}>\cdots>c_{6}>s_{6}
$$

Then the reduced lexicographic groebner basis of IKT equations looks like:

$$
\begin{gathered}
s_{6}{ }^{16}+a_{1,15} \cdot s_{6}{ }^{15}+a_{1,14} \cdot s_{6}{ }^{14}+\cdots+a_{1,1} \cdot s_{6}+a_{1,0} \\
c_{6}+a_{2,15} \cdot s_{6}{ }^{15}+a_{2,14} \cdot s_{6}{ }^{14}+\cdots+a_{2,1} \cdot s_{6}+a_{2,0} \\
\vdots \\
c_{1}+a_{12,15} \cdot s_{6}{ }^{15}+a_{12,14} \cdot s_{6}{ }^{14}+\cdots+a_{12,1} \cdot s_{6}+a_{12,0}
\end{gathered}
$$

