Inverse Kinematic Task (IKT)

Mathematical Formulation of IKT

$$
\begin{gathered}
M=M_{1}^{0} M_{2}^{1} M_{3}^{2} M_{4}^{3} M_{5}^{4} M_{6}^{5} \\
\underbrace{\left[\begin{array}{cc}
\mathbf{R} & \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]}_{\begin{array}{c}
\text { pose of the } \\
\text { end effector }
\end{array}}=\prod_{i=1}^{6} M_{i}^{i-1}(\theta_{i}+\underbrace{\theta_{i_{\text {offse }}}, d_{i}, a_{i}, \alpha_{i}}_{\text {DH parameters }}) \\
{\left[\begin{array}{ccc}
f_{1} & \ldots & f_{4} \\
\vdots & \ddots & \vdots \\
f_{9} & \ldots & f_{12} \\
0 & \ldots & 0
\end{array}\right]=\prod_{i=1}^{6} M_{i}^{i-1}\left(\theta_{i}+\theta_{i_{\text {offset }}}, d_{i}, a_{i}, \alpha_{i}\right)-\left[\begin{array}{cc}
\mathbf{R} & \mathrm{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\mathbf{O}}
\end{gathered}
$$

We can solve $\mathbf{F}\left(\theta_{1}, \ldots, \theta_{6}, \mathbf{R}, \mathrm{t}\right)=\mathbf{F}(\boldsymbol{\theta}, \mathbf{p})=\mathbf{0}$ either numerically or symbolically.

Numerical methods

(1) Newthon's method
(2) Homotopy continuation (predictor + Newthon's method)

Newthon's method

Denote by $\boldsymbol{\theta}^{*}$ one of the solutions to $\mathbf{F}(\boldsymbol{\theta})=\mathbf{0}$ and by $\mathbf{J}_{\mathbf{F}}$ the Jacobian $\frac{\partial \mathbf{F}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \in M^{12 \times 6}$.
Two basic operations of the Newthon's method are:

$$
\begin{gathered}
\boldsymbol{\theta}_{0}=\text { something close to } \boldsymbol{\theta}^{*} \quad \text { (initialization) } \\
\boldsymbol{\theta}_{i+1}=\boldsymbol{\theta}_{i}-\mathbf{J}_{\mathbf{F}}^{+}\left(\boldsymbol{\theta}_{i}\right) \mathbf{F}\left(\boldsymbol{\theta}_{i}\right) \quad \text { (improve the previous guess) }
\end{gathered}
$$

Homotopy continuation

$$
\begin{aligned}
& \mathbf{H}(\boldsymbol{\theta}, t)=(1-t) \mathbf{F}\left(\boldsymbol{\theta}, \mathbf{p}_{1}\right)+t \mathbf{F}\left(\boldsymbol{\theta}, \mathbf{p}_{2}\right) \\
& \hat{\boldsymbol{\theta}}_{k+1}=\boldsymbol{\theta}_{k}-\left(\frac{\partial \mathbf{H}}{\partial \boldsymbol{\theta}}\left(\boldsymbol{\theta}_{k}, t_{k}\right)\right)^{+} \frac{\partial \mathbf{H}}{\partial t}\left(\boldsymbol{\theta}_{k}, t_{k}\right)\left(t_{k+1}-t_{k}\right)
\end{aligned}
$$

Symbolic method

- Equations $\mathbf{F}(\boldsymbol{\theta})$ are polynomial in $\cos \theta_{i}$ and $\sin \theta_{i}$
- New variables: $c_{i}=\cos \theta_{i}, s_{i}=\sin \theta_{i}$
- New polynomial equations:

$$
\mathbf{F}\left(c_{1}, s_{1}, \ldots, c_{6}, s_{6}\right) \text { together with } c_{i}^{2}+s_{i}^{2}=1
$$

Groebner bases (symbolic method)

System of polynomial equations

Groebner basis (lexicographic ordering)
Solving univariate polynomials $+$
Backsubstitution

Solutions

Lexicographic monomial ordering

(1) Order variables (alphabetical order), i.e.

$$
x>y>z
$$

(2) Every monomial can be written now as $\mathbf{x}^{\boldsymbol{\alpha}}$ with $\mathbf{x}=(x, y, z)$, e.g.

$$
\mathbf{x}^{\boldsymbol{\alpha}}=y^{2} x^{3} z \Rightarrow \boldsymbol{\alpha}=(3,2,1)
$$

(3) We say that

$$
\mathbf{x}^{\boldsymbol{\alpha}_{1}} \geq_{l e x} \mathbf{x}^{\boldsymbol{\alpha}_{2}}
$$

if the left-most nonzero element of $\boldsymbol{\alpha}_{1}-\boldsymbol{\alpha}_{2}$ is positive or $\boldsymbol{\alpha}_{1}=\boldsymbol{\alpha}_{2}$.
(9) For example,

$$
x^{3} y^{3} z \geq_{l e x} x^{3} y^{2} z^{10}, \text { since } \boldsymbol{\alpha}_{1}-\boldsymbol{\alpha}_{2}=(3,3,1)-(3,2,10)=(0,1,-9)
$$

Polynomial Division Algorithm

```
Algorithm 1: Polynomial Division Algorithm
    Input: \(f, F=\left(f_{1}, \ldots, f_{s}\right), \geq\) (monomial ordering)
    Output: \(\left(q_{1}, \ldots, q_{s}\right), r\) such that \(f=\sum_{i=1}^{s} q_{i} f_{i}+r, \mathrm{LT}_{\geq}(r)\) is not
                divisible by any of \(\mathrm{LT}_{\geq}\left(f_{i}\right)\) or \(r=0\)
    \(1 q_{1} \leftarrow \ldots \leftarrow q_{s} \leftarrow r \leftarrow 0\)
    \(2 p \leftarrow f\)
    3 while \(p \neq 0\) do
\(4 \quad i \leftarrow 1\)
5 divisionoccured \(\leftarrow F A L S E\)
\(6 \quad\) while \(i \leq s\) and divisionoccured \(=F A L S E\) do
    if \(\mathrm{LT}_{\geq}\left(f_{i}\right)\) divides \(\mathrm{LT}_{\geq}(p)\) then
    \(\quad q_{i} \leftarrow q_{i}+\frac{\mathrm{LT}_{\geq}(p)}{\mathrm{LT}_{\geq}\left(f_{i}\right)}\)
                \(p \leftarrow p-\frac{\mathrm{LT}_{>}(p)}{\mathrm{LT}_{\geq}\left(f_{i}\right)} f_{i}\)
                divisionoccured \(\leftarrow T R U E\)
            else
                \(i \leftarrow i+1\)
            if divisionoccured \(=F A L S E\) then
                \(r \leftarrow r+\mathrm{LT}_{\geq}(p)\)
                \(p \leftarrow p-\mathrm{LT}_{\geq}^{-}(p)\)
16 return \(\left(q_{1}, \ldots, q_{s}\right), r\)
```

