Programming with OpenMP
Part 1

FAKULTA .
ELEKTROTECHNICKA
CVUT V PRAZE

Introduction to OpenMP

* OpenMP (Open Multi-Processing) provides constructs for parallel
programming in C++, C, and Fortran on Linux, MacOS, and Windows.

* A sequential code is transformed to a parallel one by adding compiler
pragmas, so if a compiler does not support OpenMP, the pragmas are
skipped and the output is a sequential program.

- OpenMP manual: 1.3 Execution model: The OpenMP API is intended to
support programs that will execute correctly both as parallel programs
(multiple threads of execution and a full OpenMP support library) and as
sequential programs (directives ignored and a simple OpenMP stubs
library). However, it is possible and permitted to develop a program that
executes correctly as a parallel program but not as a sequential program,
or that produces different results when executed as a parallel program
compared to when it is executed as a sequential program. Furthermore,
using different numbers of threads may result in different numeric results
because of changes in the association of numeric operations.

* OpenMP is widely used in software like Blender, fftw, OpenBLAS, and eigen

to accelerate computations.

e Itis easy to use!

Execution model

OpenMP program starts as a single thread only (master thread).

It is executed sequentially until it reaches a parallel region defined by OpenMP
pragma.

At the entry of parallel region, new team of threads is created. Each thread executes
concurrently with the others in order to share the work to be done.

An OpenMP program alters between sequential regions and parallel regions.

parallel regions

master

nested parallel region

sequential part sequential part sequential part ‘

Using OpenMP

* |nclude header file

#include <omp.h>

* Cmake (multi-platform)
find package(OpenMP)
if (OPENMP_FOUND)
set (CMAKE_C_FLAGS "${CMAKE_C FLAGS} ${OpenMP_C FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")

set (CMAKE_EXE LINKER FLAGS "${CMAKE_EXE LINKER FLAGS} ${OpenMP_EXE_ LINKER FLAGS}")
endif ()

¢ gcC

g++ -fopenmp ...

Hello world! In OpenMP...

lab codes/src/HelloWorld. cpp

Runtime Library Routines

omp_get _num_procs()

Returns the number of processors that are available to
the program

omp_get_num_threads()

Returns the number of threads that are currently in the
team executing the parallel region from which it is called

omp_get_thread_num()
Returns the calling thread index within the current team

#pragma omp parallel

Creates team of threads and

/ starts executing them in parallel

#pragma omp parallel
{

cout << "This is thread " << omp get thread num() << " speaking" << endl;
}4<F‘Rh‘*“‘*“""*"*“—‘-‘—-‘—_‘_h‘__‘a_‘_

cout << "Parallel block finished" << endl;

Waits for threads to finish (barrier)

Output:

This is thread 0 speaking
This is thread 3 speaking
This is thread 2 speaking
This is thread 1 speaking
Parallel block finished

#pragma omp parallel

Creates team of 8 threads

#pragma omp parallel num threads(8)

{
cout << "This is thread " << omp get thread num() << " speaking" << endl;

}

Output:

This is thread 0 speaking
This is thread 3 speaking
This is thread 6 speaking
This is thread 1 speaking
This is thread 2 speaking
This is thread 7 speaking
This is thread 4 speaking
This is thread 5 speaking

#pragma omp single

Block performed by single thread

#pragma omp parallel

{
cout << "This is thread " << omp get thread num() << " speaking" << endl;
#pragma omp single
{
cout << "The single part was done by thread " << omp get thread num() << endl;
}
}
Output:

This is thread 3 speaking
The single part was done by thread 3
This is thread 1 speaking
This is thread 2 speaking
This is thread 0 speaking

#pragma omp parallel

{

#pragma omp sections
j -~

#pragma omp section

{
cout << "section
cout << "section
}
#pragma omp section
{ "
cout << "section
cout << "section
}

} } Waits for threads to finish (barrier).
Can be changed by

Output:

section 2, first: O
section 2, second: O
section 1, first: 1
section 1, second: 1

Each section is performed by only one thread

first: " << omp get thread num() << endl;
second: " << omp get thread num() << endl;
first: " << omp get thread num() << endl;
second: " << omp get thread num() << endl;

#pragma omp sections nowait

#pragma omp critical

int sum;
#pragma omp parallel Critical region, performed by all threads
{ o <« butnotat once (mutual exclusion)
#pragma omp critical
{

cout << "Thread " << omp get thread num() << " in critical region" << endl;
sum += omp get thread num();

}

cout << sum << endl;

Output:

Thread 1 in critical region
Thread 0 in critical region
Thread 3 in critical region
Thread 2 in critical region
6

#pragma omp barrier

Threads in team wait on the barrier

#pragma omp parallel

{
cout << "Before barrier thread " << omp get thread num() << endl;
#pragma omp barrier
cout << "After barrier thread " << omp get thread num() << endl;
}
Output:

Before barrier thread 0
Before barrier thread 3
Before barrier thread 1
Before barrier thread 2
After barrier thread 1
After barrier thread 2
After barrier thread 0
After barrier thread 3

* Write function for computing vector normalization. Split the
vector into two halves, each is processed by one section.

— You may use skeleton
lab codes/src/VectorNormalization.cpp

vector<vector<double>> matrix;

vector<double> rowSums(matrix.size(), 0);
for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {
rowSums[i] += matrix[i][j];
}

double sum = 0.0;
for (int i = 0; 1 < matrix.size(); i++) {
sum += rowSums|[1i];

}

12

12

»

12

12

Parallel summing of matrix rows

#pragma omp parallel
{ /

#pragma omp for

Each iteration of for loop performed
by a thread (in parallel) from the team

for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {
rowSums[i] += matrix[i][j];

}

A shorter code...

#pragma omp parallel for

for (int i = 0; i < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {

rowSums[i] += matrix[i][j];

}

Question: what happens if you write
the pragma on the inner loop?

If clause

#pragma omp parallel for if(matrix.size() >= 10)
for (int i = 0; 1 < matrix.size(); i++) {
for (int j = 0; j < matrix[i].size(); j++) {
rowSums[i] += matrix[i][]j];
}

\

Threads are only created
for large matrices. Small
matrices are summed
sequentially since it does
not pays off to create
threads.

Reductions

* Parallel aggregation of an expression, e.g., a sum

sum = rowSums[OQ] + rowSums[1l] + rowSums[2] + ... + rowSums[matrix.size() - 1];
Operators:
+1 *1 -1
& |, " &&, |, List of variables:
max, min var, var,, ..., var_
double sum = 0.0; ¥ / Useful for doing multiple
#pragma omp parallel for reduction(+:sum) reductions at once

for (int i = 0; 1 < matrix.size(); i++) {
sum += rowSums|[i];
}

Collapse

Collapse for loops into
one for distribution of the
work among threads

matrix.size();
matrix[0].size();

int numRows
int numCols

double sum = 0.0;
#pragma omp parallel for collapse(2) reduction(+:sum)
for (int i = 0; i < numRows; i++) {
for (int j = 0; j < numCols; j++) {
sum += matrix[i][j];
}

Data sharing

int a = 10; = Shared among

int b = 100; = threads
#pragma omp parallel for

for (int i § 0; i < 10; i++) {
int =M
} -V
* The sharing can be stated explicitly as a clause

- #pragma omp parallel for private(a, b)

Thread private

* Variables a and b are private to each thread (without global initialization)

- #pragma omp parallel for firstprivate(a, b)

« Variables a and b are private to each thread (with global initialization)

- #pragma omp parallel for shared(a, b)
 \Variables a and b are shared among threads

* The default policy can be set to
- #pragma omp parallel for default(shared)

* By default, all the variables outside of the parallel section are shared

- #pragma omp parallel for default(none)

* The programmer must explicitly state the sharing policy of the variables

Examples

* Vector normalization using parallel for (reduction, critical
section ...)

 Computation of pi using Monte Carlo

Samples from uniform

// \, <4 | distribution

s‘ 4-numSamplesInCircle -
¢ o / totalNumSamples

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

