
1 Gaussian elimination: LU-factorization

This note introduces the process of Gaussian1 elimination, and translates
it into matrix language, which gives rise to the so-called LU -factorization.
Gaussian elimination transforms the original system of equations into an
equivalent one, i.e., one which has the same set of solutions, by adding mul-
tiples of rows to each other. By eliminating variables from the equations,
we end up with a “triangular” system, which can be solved simply through
substitution. Let us follow the elimination process in a simple example of
three equations in three unknowns.

ε1 : 2u − 2v + 3w = 1
ε2 : 6u − 7v + 14w = 5
ε3 : 4u − 8v + 30w = 14
ε′1 = ε1 : 2u − 2v + 3w = 1
ε′2 = ε2 − 3ε1 : − v + 5w = 2
ε′3 = ε3 − 2ε1 : − 4v + 24w = 12
ε′′1 = ε′1 : 2u − 2v + 3w = 1
ε′′2 = ε′2 : − v + 5w = 2
ε′′3 = ε′3 − 4ε′2 : 4w = 4
Back- w = 1
substitution: − v + 5 = 2 ⇒ v = 3

2u − 6 + 3 = 1 ⇒ u = 2

(1.1)

We will now translate this process into matrix language.
A matrix is a rectangular array of numbers. Our example here works with

3 by 3 matrices, i.e., 3 rows and 3 columns. Actually, it is often best to think
of a matrix as a collection of columns (or a collection of rows, depending on
the context), rather than a rectangular array of numbers. It is also often
useful, to think of a matrix B in terms of what it “does” when it acts on a
vector x (or even some other matrix C). This is tantamount to interpreting
the matrix B as an operator effecting the transformation x 7→ Bx. Let us
denote the standard basis vectors by e1, . . . , ek, . . .; for vectors with three

1Carl Friedrich Gauss, 1777-1855, one of the greatest mathematicians. The technique
of “Gaussian” elimination has been known prior to Gauss.
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components we have

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 ; (1.2)

note, that we always write our vectors as column vectors. The matrix which
has the standard basis vectors as its columns is called the identity matrix, I,

I =

 1 0 0
0 1 0
0 0 1

 . (1.3)

The identity matrix leaves vectors and matrices unchanged, i.e.,

Ix = x, IB = B,

for all vectors x and matrices B. On the other hand, the standard basis
vectors can be used to pick out columns and rows from a matrix:

Bek = k-th column of B; eT
k B = k-th row of B;

the ·T symbol means transpose: it makes row vectors out of column vectors
and vice versa. For a matrix, BT is the matrix which has the rows of B as
its columns. Finally,

eT
j Bek = bjk = the element of B in row j and column k.

We now return to our example. First, our given system of equations (1.1)
is  2 −2 3

6 −7 14
4 −8 30


︸ ︷︷ ︸

A

 u
v
w


︸ ︷︷ ︸

x

=

 1
5

14


︸ ︷︷ ︸

b

. (1.4)

The first step in the elimination process above is to subtract three times
the first equation from the second. Therefore, in the coefficient matrix A, we
replace the second row by the the difference between it and three times the
first row. Of course, the factor 3 is chosen to obtain a 0 in the (2,1)-position
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of the matrix. One such elimination step corresponds to multiplying the
matrix A by the elementary matrix E21 from the left: 1 0 0

−3 1 0
0 0 1


︸ ︷︷ ︸

=: E21

 2 −2 3
6 −7 14
4 −8 30


︸ ︷︷ ︸

A

=

 2 −2 3
0 −1 5
4 −8 30


︸ ︷︷ ︸

E21A

. (1.5)

An elementary matrix is equal to the identity matrix I, except for one of
the off-diagonal elements which is nonzero. Proceeding with our elimination
steps we obtain 1 0 0

0 1 0
−2 0 1


︸ ︷︷ ︸

=: E31

 2 −2 3
0 −1 5
4 −8 30


︸ ︷︷ ︸

E21A

=

 2 −2 3
0 −1 5
0 −4 24


︸ ︷︷ ︸

E31E21A

, (1.6)

and  1 0 0
0 1 0
0 −4 1


︸ ︷︷ ︸

=: E32

 2 −2 3
0 −1 5
0 −4 24


︸ ︷︷ ︸

E31E21A

=

 2 −2 3
0 −1 5
0 0 4


︸ ︷︷ ︸

E32E31E21A =: U

. (1.7)

Thus, our “final” matrix U is upper triangular, and corresponds to the
coefficients of the final set of equations (ε′′1, ε

′′
2, ε

′′
3) in (1.1). In linear algebra

courses this is often referred to as the row echelon form of the matrix A. The
same matrices need to be applied to the vector b, to obtain our equivalent
system of equations. Note that the three elementary matrices E21, E31, and
E32 contain the information about how we proceeded in the process of Gaus-
sian elimination; they are like entries in a bookkeeping journal. Therefore,
it should be possible to reconstruct the original matrix A from U and the
bookkeeping matrices E21, E31, and E32. From (1.7) we have

E32E31E21A = U
E31E21A = E−1

32 U
E21A = E−1

31 E−1
32 U

A = E−1
21 E−1

31 E−1
32︸ ︷︷ ︸

=: L

U.
(1.8)
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This is the formula for reconstructing the matrix A. To find L, we need to
find the inverses of elementary matrices. This is easy to do, if we remember
the meaning of these elementary matrices. For example, E21 when applied
to a matrix from the left, subtracts three times the first row from the second
row. Clearly, the inverse operation (undoing what we have just done) is to
add three times the first row to the second row.

E21 =

 1 0 0
−3 1 0

0 0 1

 ⇒ E−1
21 =

 1 0 0
+3 1 0

0 0 1

 ; (1.9)

so inverses of elementary matrices are simply obtained by changing the sign
of the nonzero off-diagonal element. Now, another interesting phenomenon
occurs, when we perform the matrix multiplication to obtain L:

L = E−1
21 E−1

31 E−1
32

=

 1 0 0
3 1 0
0 0 1


 1 0 0

0 1 0
2 0 1


 1 0 0

0 1 0
0 4 1

 (1.10)

=

 1 0 0
3 1 0
2 0 1


 1 0 0

0 1 0
0 4 1

 =

 1 0 0
3 1 0
2 4 1

 ,

so the matrix multiplication can be performed by just putting the nonzero off-
diagonal elements of the elementary matrices into the appropriate positions in
the matrix L. From an algorithmic point of view this means that the entries
of L, which are just the multipliers in the Gaussian elimination process, can
be easily stored during the process of Gaussian elimination. Please note, that
the order in which those elementary matrices appear is crucial, as

L−1 = E32E31E21 =

 1 0 0
−3 1 0
10 −4 1

 6=
 1 0 0
−3 1 0
−2 −4 1

 . (1.11)

Finally, putting everything together we obtain 2 −2 3
6 −7 14
4 −8 30


︸ ︷︷ ︸

A

=

 1 0 0
3 1 0
2 4 1


︸ ︷︷ ︸

L

 2 −2 3
0 −1 5
0 0 4


︸ ︷︷ ︸

U

, (1.12)
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i.e., Gaussian elimination gives us the LU-factorization (sometimes also
called the LU-decomposition) of the matrix A, A = LU , where L is a
lower triangular matrix with all diagonal entries equal to 1, and U is an
upper triangular matrix.

Once we have this factorization, how can we make use of it to solve
Ax = b? It is easy to see that

Ax = LUx = b

is equivalent to solving
Ux = L−1b =: c.

In general, we do not want to compute the inverse of L. Instead, we can find
c = L−1b through the process called forward substitution,

Lc = b;

since L is triangular this is as easy to do as the final step, namely backward
substitution,

Ux = c.

As we shall see later, these two substitution processes are no more costly
than computing A−1b, given that A−1 is known, so in that sense knowing
L and U is as good for solving systems as knowing the inverse. Once the
factorization is obtained, it is very cheap to solve many systems with the
same matrix A and different right hand sides.

Proposition 1.1 If Gaussian elimination does not break down, i.e., if all
pivots (the leading diagonal elements at each step) are nonzero, then the
matrix A has a unique LU-factorization, where L is a lower triangular matrix
with all diagonal entries equal to 1, and U is an upper triangular matrix.

So what if Gaussian elimination “breaks down”, i.e., if there is no LU
factorization of our matrix A? For example, the matrix

A =

(
0 1
1 0

)

does not have an LU factorization, even though the corresponding system
of equations poses no difficulties. Indeed, if we simply switch the two rows
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(thus obtaining an equivalent system), the resulting matrix does have an LU
factorization, (

1 0
0 1

)
= LU,

where L = U = I, and I denotes the identity matrix of appropriate size.
Usually, it is less obvious but no more difficult to fix the breakdown. For
example, applying Gaussian elimination to

A =

 1 1 1
1 1 −1
2 −1 −1


after two steps results into 1 0 0

−1 1 0
−2 0 −1

A =

 1 1 1
0 0 −2
0 −3 −3

 ;

to proceed we must switch rows 2 and 3, to move a nonzero element to the
current diagonal position (2,2). How can switching rows be expressed in
matrix language? Again, by matrix multiplication from the left2, this time
with a permutation matrix,

P = P23 =

 1 0 0
0 0 1
0 1 0

 .

Thus, we obtain

PA =

 1 0 0
0 0 1
0 1 0


 1 1 1

1 1 −1
2 −1 −1



=

 1 1 1
2 −1 −1
1 1 −1

 =

 1 0 0
2 1 0
1 0 1


 1 1 1

0 −3 −3
0 0 −2

 ,

i.e., the matrix PA does have an LU -factorization. Of course, for larger
matrices, more of those row exchanges may be necessary, which leads to a

2multiplying from the left will operate on the rows of a matrix, multiplying from the
right will operate on the columns of a matrix
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more complicated permutation of the rows in the original matrix A, but can
easily be handled by good “bookkeeping”.

Our strategy consists in switching rows to obtain a nonzero “pivot” (the
current diagonal element). Naturally, this is not possible, if all the elements
in the present column are zero. But in that case, we may just simply ignore
the present column and move on to the next one. However, this scenario
means that our matrix A is singular, i.e., Ax = b has either no solution, or
infinitely many. Although we will ignore this case in the following, we give
an example.

A =


1 1 1 0
1 1 2 1
1 1 2 2
1 1 3 0

 →


1 1 1 0
0 0 1 1
0 0 1 2
0 0 2 0

→

→


1 1 1 0
0 0 1 1
0 0 0 1
0 0 0 −2

 →


1 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

 = U,

with

L =


1 0 0 0
1 1 0 0
1 1 1 0
1 2 −2 1

 .

The resulting upper triangular matrix U has a whole row of zeros, clearly
indicating singularity.

Summing up, the main result of this section is

Theorem 1.2 (LU-factorization) For every n by n matrix A there exists
a permutation matrix P , such that PA possesses an LU-factorization, i.e.,
PA = LU , where L is a lower triangular matrix with all diagonal entries
equal to 1, and U is an upper triangular matrix.
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