$\label{logical reasoning and programming, lab session 6} Logical \ reasoning \ and \ programming, \ lab \ session \ 6$

(October 25, 2021)

Some exercises require an SMT solver, e.g., CVC4 has an online version.

- **6.1** Try all the examples in the SMT-LIB Examples.
- **6.2** Show that x y > 0 iff x > y holds for integers, but does not hold for bit-vectors with a fixed length.
- **6.3** Let x be a 32 bit-vector. You want to verify that if you take $y = x \gg_s 31$ (arithmetic right shift is bvashr) followed by one of the following
 - $(x \oplus y) y$, or
 - $(x+y) \oplus y$, or
 - x ((x+x)&y),

then you get the absolute value of x. For further details, check this webpage.

- **6.4** Try CBMC, using MiniSAT and Z3, on f11, f12, f13, and f14 from this example. For details, see these lecture notes.
- **6.5** If we want to combine theories in SMT using the Nelson–Oppen method, we require that both of them are stably infinite. Assume two theories \mathcal{T}_1 with the language $\{f\}$ and \mathcal{T}_2 with the language $\{g\}$, where f and g are uninterpreted unary function symbols. Moreover, \mathcal{T}_1 has only models of size at most 2 (for example, it contains $\forall X \forall Y \forall Z (X = Y \lor X = Z)$ as an axiom). Show that the Nelson–Oppen method says that

$$f(x_1) \neq f(x_2) \land g(x_2) \neq g(x_3) \land g(x_1) \neq g(x_3).$$

is satisfiable in the union of \mathcal{T}_1 and \mathcal{T}_2 , but this is clearly incorrect.

6.6 We have a language that contains only one binary predicate symbol \in and we have an interpretation $\mathcal{M} = (D, i)$ such that $D = \{a, b, c, d\}$ and $i(\in)$ is given by the following diagram:

Meaning that $x \in y$ iff there is an arrow from x to y. Decide whether the following formulae are valid in \mathcal{M} :

- (a) $\exists X \forall Y (\neg (Y \in X)),$
- (b) $\exists X \forall Y (Y \in X)$,
- (c) $\exists X \forall Y (Y \in X \leftrightarrow Y \in Y)$,
- (d) $\exists X \forall Y (Y \in X \leftrightarrow \neg (Y \in Y)).$

- **6.7** Show that the following formulae are valid and provide counter-examples for the opposite implications:
 - (a) $\forall X p(X) \lor \forall X q(X) \to \forall X (p(X) \lor q(X)),$
 - (b) $\exists X (p(X) \land q(X)) \rightarrow \exists X p(X) \land \exists X q(X),$
 - (c) $\exists X \forall Y p(X, Y) \rightarrow \forall Y \exists X p(X, Y),$
 - (d) $\forall X p(X) \to \exists X p(X)$.
- **6.8** Show that the "exists unique" quantifier \exists ! does not commute with \exists , \forall , nor \exists !.