
Answer Set Programming
(Partially based on slides from K. Chvalovsky and T. Eiter)



A Problem with Negation as Failure
• Negation in Prolog: “not A” is true if  we fail to prove A.


• How would you interpret a rule such as:


a :- not a.


• If we fail to prove a then a is true but that means it can be proven so the 
rule should not have fired but then it a would not be proven…. chicken 
and egg problem.


• (If the above were a classical logic formula with a classical negation then 
we would have: , so its model would be {a} but that 
is not what we want from negation as failure.)

a ⇐ ¬a ≡ a ∨ a ≡ a



What will Prolog do?



A More Complex Example

man(dilbert). 
single(X) :- man(X), not husband(X). 
husband(X) :- man(X), not single(X).



What will Prolog do?



In Classical Logic
If we interpreted the previous program using classical negation, instead of 
negation as failure, we would get the following FOL sentence:


.


This sentence has two minimal models over the domain: 


 and .


None of these models is the least model. There is no least model in this 
case. So the minimum model semantics will not help us.

man(dilbert) ∧ ∀x : single(x) ∨ married ∨ ¬man(x)

{man(dilbert), single(dilbert)} {man(dilbert), married(dilbert)}



We need different semantics

• Prolog is a nice programming language but it is not fully declarative: the 
order of rules matters, the order of literals in rules matters, cut is not 
declarative at all, negation implemented using cut is tricky from the 
knowledge-representation perspective…



Stable Model Semantics

• By Gelfond and Lifschitz [1988, 1991].


• Based on the idea of stable models, which agree with minimal model 
semantics for programs without negation (and also for so-called stratified 
programs - not too important here).


• (There are other types of semantics for logic programming, such as well-
founded semantics [van Gelder er al, 1991]… but we will not be dealing 
with them here.)



Caution!

• In most of what follows we will focus on ground programs, 
that is programs without variables, e.g. a :- b, c.



Small Recap: Minimal Model Semantics

• Proposition: Let  be the set of all models of a given definite program . 
Let us define . Then  is a model of  (and hence 

). We call  the least model of 

ℳ 𝒫
ωleast = ⋂

ω∈ℳ

ω ωleast 𝒫

ωleast ∈ ℳ ωleast ω .

RECAP



Constructing the Least Model
• Definition ( -operator, aka immediate consequence operator): Let  be a definite 

program and  be an interpretation. Then the -operator is defined as 
TP 𝒫

ω TP
TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

RECAP



Constructing the Least Model
• Definition ( -operator, aka immediate consequence operator): Let  be a definite 

program and  be an interpretation. Then the -operator is defined as 



• Proposition: The least model of  is the least fix-point of the sequence .

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))

RECAP



Constructing the Least Model
• Definition ( -operator, aka immediate consequence operator): Let  be a definite 

program and  be an interpretation. Then the -operator is defined as 



• Proposition: The least model of  is the least fix-point of the sequence .


• Example: Let We have


1.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅

RECAP



Constructing the Least Model
• Definition ( -operator, aka immediate consequence operator): Let  be a definite 

program and  be an interpretation. Then the -operator is defined as 



• Proposition: The least model of  is the least fix-point of the sequence .


• Example: Let We have


1. 


2.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .

RECAP



Constructing the Least Model
• Definition ( -operator, aka immediate consequence operator): Let  be a definite 

program and  be an interpretation. Then the -operator is defined as 



• Proposition: The least model of  is the least fix-point of the sequence .


• Example: Let We have


1. 


2. 


3. .

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .
ω2 = TP(ω1) = {a, b}

RECAP



Constructing the Least Model
• Definition ( -operator, aka immediate consequence operator): Let  be a definite 

program and  be an interpretation. Then the -operator is defined as 



• Proposition: The least model of  is the least fix-point of the sequence .


• Example: Let We have


1. 


2. 


3. .


4.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .
ω2 = TP(ω1) = {a, b}
ω3 = TP(ω2) = {a, b, c} .

RECAP



Constructing the Least Model
• Definition ( -operator, aka immediate consequence operator): Let  be a definite 

program and  be an interpretation. Then the -operator is defined as 



• Proposition: The least model of  is the least fix-point of the sequence .


• Example: Let We have


1. 


2. 


3. .


4. 


5. . We have reached fix-point,  is the least model of 
.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .
ω2 = TP(ω1) = {a, b}
ω3 = TP(ω2) = {a, b, c} .
ω4 = TP(ω3) = {a, b, c} = ω3 ω3
𝒫

RECAP



Constructing the Least Model
• Definition ( -operator, aka immediate consequence operator): Let  be a definite 

program and  be an interpretation. Then the -operator is defined as 



• Proposition: The least model of  is the least fix-point of the sequence .


• Example: Let We have


1. 


2. 


3. .


4. 


5. . We have reached fix-point,  is the least model of 
.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .
ω2 = TP(ω1) = {a, b}
ω3 = TP(ω2) = {a, b, c} .
ω4 = TP(ω3) = {a, b, c} = ω3 ω3
𝒫

RECAP



Back to Stable Model Semantics…



Positive and Normal LPs
• Positive logic program: a logic program containing no negations, i.e. all 

rules have the form: 


h :- b_1, …, b_m.


• Normal logic program: a logic program containing rules of the form:


h :- b_1, …, b_m, not c_1, …, not c_n.



Reduct PM

• Reduct of a program P relative to a set of atoms M: Given a normal logic program 
P and a set of atoms M, we define the reduct PM as 


.


• That is PM is obtained from P by:

1. removing all rules   where some of the atoms 

 are contained in M (intuition: such a rule would not “fire” under the 
context of M),


2. removing all negative literals from all the other rules.

PM = {h :- b1, …, bm |h :- b1, . … . bm, not c1, …, not cn ∈ P and ∀i : ci ∉ M}

h :- b1, . … . bm, not c1, …, not cn
c1, …, cn



Stable Models (1)
• A set of atoms M is a stable model (aka answer set) of P if M is the 

minimal model of PM.


• Example 1:



Stable Models (2)
• A set of atoms M is a stable model (aka answer set) of P if M is the 

minimal model of PM.


• Example 2:



Stable Models (3)
• A set of atoms M is a stable model (aka answer set) of P if M is the 

minimal model of PM.


• Example 2:



Complexity
• Theorem: Deciding whether a normal logic program has an answer set is:


1. NP-complete if the logic program is ground (i.e. has no variables). 
Intuition for membership in NP: Guess an answer set M and check if 
M is a minimal model of PM - this can be done in polynomial time 
using the immediate consequence operator until fixpoint. 
Intuition for hardness (in a moment).


2. NEXPTIME-complete if the logic program is function-free. 
Intuition for membership in NEXPTIME: Same as above but we first 
need to ground the program which may lead to an exponential blow-
up in its size.



Constraints
• Constraints have the form 

 :- a_1, …, a_m, not c_1, …, not c_n.


• Such a constraint removes all minimal models that contain all of a_1, …, 
a_m are true and none of c_1, …, c_n.




SAT in ASP (1)
• We will now show how to encode an arbitrary SAT problem as an ASP 

problem (thus also proving NP-hardness).


• An observation: 
For any ground atom, say a, we can introduce a new ground atom not_a 
(we could call it differently, the prefix not_ has no special meaning in 
ASP) and add the following two rules + a constraint:

a :- not not_a. 
not_a :- not a. 
:- a, not_a.


Then the answer sets will be: {a}, {not_a}.



SAT in ASP (2)
• We will now show how to encode an arbitrary SAT problem as an ASP 

problem (thus also proving NP-hardness).


• An observation: 
For any ground atom, say a, we can introduce a new ground atom not_a 
(we could call it differently, the prefix not_ has no special meaning in 
ASP) and add the following two rules + a constrain:

a :- not not_a. 
not_a :- not a. 
:- a, not_a.


Then the answer sets will be: {a}, {not_a}.



SAT in ASP (3)
a :- not not_a. 
not_a :- not a. 
:- a, not_a.


Then the answer sets will be: {a}, {not_a}.

Why?
M PM min model of PM

{} a.

not_a. {a, not_a}

{a} a. {a}

{not_a} not_a. {not_a}

{a,not_a} {}



SAT in ASP (4)
• Now we will encode a SAT problem (the construction can be easily 

generalized):


• Example:   
 
a :- not not_a. 
not_a :- not a. 
:- a, not_a. 
b :- not not_b. 
not_b :- not b. 
:- b, not_b. 

φ = (a ∨ b) ∧ (¬a ∨ ¬b)

:- not_a, not_b. (a ∨ b) ≡ ¬(¬a ∧ ¬b) ≡ ⊥ ⇐ (¬a ∧ ¬b)
:- a, b. (¬a ∨ ¬b) ≡ ¬(a ∧ b) ≡ ⊥ ⇐ (a ∧ b)



SAT in ASP (5)
• Example:   φ = (a ∨ b) ∧ (¬a ∨ ¬b)



Disjunctive Rules
• A disjunctive logic rule r is a rule of the form: 


h_1 | h_2 | … | h_k :- b_1, …, b_m, not c_1, …, not c_n.


• We define h_1, h_2, …, h_k , b_1,…,b_m, c_1, 
…, c_n , b_1,…,b_m , c_1, …, c_n .


• A set of atoms M is a model of a disjunctive program P if for all rules  
it holds: .

H(r) = { } B(r) = {
} B+(r) = { } B−(r) = { }

r ∈ P
if B+(r) ⊆ M and B−(r) ∩ M = ∅ then H(r) ∩ M ≠ ∅



Minimal Models
• Unlike normal logic programs without negation as failure, which have a 

single minimal (least) model, disjunctive logic programs can have multiple 
minimal models (even without negation).


• Example: 

c. 
a | b :- c.


This program has two minimal models: {a,c}, {b,c}.



Reduct of a Disjunctive Program
• Similar to reduct of a normal program…


• PM is obtained from P by:

1. removing all rules   where 

some of the atoms  are contained in M (intuition: such a rule 
would not “fire” under the context of M),


2. removing all negative literals from all the other rules


• M is an answer set of a program P if M is a (non-unique) minimal model of 
PM (same as for normal programs).

h1 |… |hk :- b1, . … . bm, not c1, …, not cn
c1, …, cn



Complexity

• Deciding whether a disjunctive logic P has an answer set is


• NPNP-complete if P is ground.


• NEXPTIMENP-complete if P is function-free (but not ground).



Intermezzo: Grounding (1)



Intermezzo: Grounding (2)
• Naive grounding: Use all substitutions.


• There are also more intelligent grounding mechanisms (see, e.g., the 
GrinGo grounder).

giant(john).

elf(bob).

tall(X) :- giant(X).

small(X) :- elf(X).


taller(X,Y) :- tall(X), 
               small(Y).

giant(john).

elf(bob).

tall(john) :- giant(john).

tall(bob) :- giant(bob).

small(john) :- elf(john).

small(bob) :- elf(bob). 
 
taller(john,john) :- tall(john), 
                     small(john). 
taller(john,bob) :- tall(john), 
                     small(bob). 
….



Graph Coloring using ASP (1)
• Recall that a coloring of a given graph is an assignment of colors to its 

vertices in such a way that no two vertices connected by an edge have 
the same color. We are typically interested in coloring a graph with a given 
set of colors.



Graph Coloring using ASP (2)
• Recall that a coloring of a given graph is an assignment of colors to its 

vertices in such a way that no two vertices connected by an edge have 
the same color. We are typically interested in coloring a graph with a given 
set of colors.


node(1). node(2). node(3). node(4). 
edge(1,2). edge(1,4). edge(2,3). edge(3,4). 
edge(X,Y) :- edge(Y,X). 
 
red(X) | blue(X) :- node(X). 
:- red(X), blue(X). 
:- red(X), edge(X,Y), red(Y). 
:- blue(X), edge(X,Y), blue(Y).



Graph Coloring using ASP (3)



Graph Coloring using ASP (4)
• Recall that a coloring of a given graph is an assignment of colors to its 

vertices in such a way that no two vertices connected by an edge have 
the same color. We are typically interested in coloring a graph with a given 
set of colors.


node(1). node(2). node(3). node(4). 
edge(1,2). edge(1,4). edge(2,3). edge(3,4). 
edge(X,Y) :- edge(Y,X). 
 
red(X) | blue(X) :- node(X). 

:- red(X), blue(X). ← this can be removed… do you see why? 
:- red(X), edge(X,Y), red(Y). 
:- blue(X), edge(X,Y), blue(Y).



Note
• Graph coloring can be also expressed and solved using normal logic 

programs (not disjunctive) since the ASP problem with normal programs is 
NP-complete.


• Disjunctive programs can express more complex problems from the class 
NPNP.



Modelling



Choice Rules
• A choice rule: 

{h_1;…;h_k} :- b_1, …, b_m, not c_1, …, not c_n.


The meaning is that any subset of {h_1,…,h_k} can be added to the 
answer set if the body is satisfied.


• Example:  
 
a.  
{b} :- a. 
 
This program has two answer sets: {a}, {a,b}.



Choice Rules (Meaning)
{h_1;…;h_k} :- b_1, …, b_n, not c_1, …, not c_m.



Cardinality Constraints
• Cardinality constraints have the form:


l{b_1; …, b_n; not c_1; …; not c_m}u


The meaning is that at least l and at most u atoms from {b_1; …, b_n; not 
c_1; …; not c_m} are true in a stable model. If l or u is missing, respectively, 
then there is no lower or upper bound, respectively. Cardinality constraints 
can be used in heads and bodies.



There are also other modelling constructs that we have not covered, 
such as weight constraints and aggregate atoms, weak constraints…



Consequence Relations for 
Answer Sets



Brave and Cautious Consequence
• An atom a is a brave consequence of P if  for some answer set M 

of P.


• An atom a is a cautious consequence of P if  for all answer sets M 
of P.

M ⊧ a

M ⊧ a



Non-Monotonicity
• Both brave and cautious consequence relations are non-monotonic.


• In classical logic when we add more rules to a theory T, everything that 
could have been derived from T can also be derived from the new larger 
theory - this is called monotonicity. 

• Consider the following program P:


bird(tweety). 
flies(X) :- bird(X), not penguin(X).


Then flies(tweety) is both a brave and cautious consequence of P. 

However, if we add penguin(tweety) to P then flies(tweety) will no 
longer be a consequence of P (neither brave not cautious).


