Computational Game Theory

Coalitional Games and the Core

Tomáš Kroupa 2021

Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague

How to share the cost?

- Cities 1, 2, 3 need to connect to the provider of energy 0
- The graph shows costs of pairwise connections
- For each A ⊆ {1,2,3}, the cost of connecting A to 0 is determined by a minimum cost spanning tree on A ∪ {0}

$$c(A) = \begin{cases} 1 & A = 2 \\ 2 & A = 1 \\ 4 & A = 3 \\ 3 & A = 12,23 \\ 5 & A = 13,123 \end{cases}$$

UN Security Council

- 5 permanent and 10 non-permanent members
- A binary decision is approved by all the permanent members and ≥ 4 non-permanent members
- There are 2¹⁵ voting scenarios!

- Fair division of costs
- Power of agents controlling some resources
- Fairness of a complicated voting system
- Efficient allocation of the profit among agents

- 1. Normal (Strategic)
- 2. Extensive
- 3. Coalitional

Games in coalitional form

- Players can form *coalitions*
- A coalition is a set of players coordinating their strategies in order to maximize *the utility of the coalition*
- Strategic aspects of coalitional games are unimportant, since they are implicitly part of the deal among players

Players and coalitions

• The player set is

$$N = \{1, \ldots, n\}, \text{ for some } n \in \mathbb{N}$$

• A coalition is a subset $A \subseteq N$, where

- \emptyset is the empty coalition
- N is the grand coalition
- $\{i\}$ is a one-player coalition
- The set of all coalitions is the powerset

$$\mathcal{P}(N) = \{A \mid A \subseteq N\}$$

Definition

Coalitional game is a pair (N, v), where v is a function

 $v \colon \mathcal{P}(N) \to \mathbb{R}$ such that $v(\emptyset) = 0$.

- The players in coalition A receive the worth v(A) independently of the actions of players in N \ A
- We will identify a coalitional game (*N*, *v*) with function *v* when the player set *N* is understood

Example: Savings game *v*

c(A) = cost of connecting A $v(A) = \sum_{i \in A} c(i) - c(A)$ $= \begin{cases} 0 & A = \emptyset, 1, 2, 3, 12\\ 1 & A = 13\\ 2 & A = 23, 123 \end{cases}$

Game v is superadditive:

 $v(A) + v(B) \le v(A \cup B)$ if $A \cap B = \emptyset$.

Example: Voting game

UN Security Council

- 5 permanent and 10 non-permanent members
- A binary decision is approved by all the permanent members and ≥ 4 non-permanent members

$$v(A) = \begin{cases} 1 & \text{if } A \supseteq \{1, \dots, 5\} \text{ and } |A| \ge 9, \\ 0 & \text{otherwise.} \end{cases}$$

Game v is superadditive and simple:

- $v(A) \in \{0, 1\}$
- v is monotone and v(N) = 1

- 1. Which coalitions will form?
- 2. How a coalition allocates its worth to its members?

Which coalitions will form?

- A coalitional structure is a partition $S = \{A_1, \ldots, A_k\}$ of N:
 - 1. $A_1 \cup \cdots \cup A_k = N$, where $A_i \neq \emptyset$

2.
$$A_i \cap A_j = \emptyset$$
 for all $i \neq j$

• The total utility of $\mathcal S$ is then

$$V(\mathcal{S}) = \sum_{i=1}^{k} v(A_i)$$

Coalition formation problem

Find a coalitional structure \mathcal{S}^* satisfying

 $V(\mathcal{S}^*) = \max \{ V(\mathcal{S}) \mid \mathcal{S} \text{ is a coalitional structure} \}$

Example: Coalitional structures for five players

Source: Wikipedia

Coalition formation problem

• Bell numbers B_n count the number of coalitional structures:

• Finding an optimal coalitional structure \mathcal{S}^* is NP-complete

Trivial solution for superadditive games

Let v be a superadditive game. For any coalitional structure S,

$$V(\mathcal{S}) = \sum_{i=1}^k v(A_i) \leq v(N) = V(\{N\}).$$

This implies that $S^* = \{N\}$.

Main questions revisited

Which coalitions will form?

- We assume that players form grand coalition N
- This is optimal for superadditive games

How a coalition allocates its worth to its members?

- An allocation is a vector $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$
- If x is allocated to players, coalition $A \subseteq N$ obtains

$$\boldsymbol{x}(A) = \sum_{i \in A} x_i$$

The solution of a game v is some set of allocations $\mathbf{x} \in \mathbb{R}^n$.

We will study three solution concepts in this course:

- 1. Core
- 2. Shapley value
- 3. Nucleolus

Core

The core is a set of efficient allocations upon which no coalition can improve.

- The core is a convex polytope in \mathbb{R}^n of dimension $\leq n-1$
- Is the core always nonempty? How to find core allocations?

Example: Savings game *v*

What is the distribution of total saving?

$$u(A) = \begin{cases} 0 & A = \emptyset, 1, 2, 3, 12 \\ 1 & A = 13 \\ 2 & A = 23, 123 \end{cases}$$

$$\begin{split} \mathcal{C}(\boldsymbol{v}) &= \left\{ \boldsymbol{x} \in \mathbb{R}^3_+ \mid \boldsymbol{x}(12) \geq 0, \; \boldsymbol{x}(13) \geq 1, \; \boldsymbol{x}(23) \geq 2, \; \boldsymbol{x}(123) = 2 \right\} \\ &= \mathsf{conv}\left\{ (0,0,2), (0,1,1) \right\} \end{split}$$

How to divide the cost – a solution

$$y_i = c(i) - x_i$$

 $\mathbf{y} \in \text{conv}\{(2,0,3), (2,1,2)\}$

Games can have empty cores

Simple majority voting

Three players vote by majority. This determines a game

$$v(A) = egin{cases} 1 & |A| \geq 2, \\ 0 & ext{otherwise} \end{cases}$$

for all
$$A \subseteq \{1, 2, 3\}$$
.

Then $C(v) = \emptyset$.

$$\mathcal{C}(v) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x}(N) = v(N), \quad \boldsymbol{x}(A) \ge v(A), \ \forall A \subseteq N \}$$

Linear program with real variables
$$x_1, \ldots, x_n$$

Minimize $x_1 + \cdots + x_n$
subject to $\sum_{i \in A} x_i \ge v(A)$ for each nonempty $A \subseteq N$

The following are equivalent:

- The optimal value is v(N)
- $\mathcal{C}(v) \neq \emptyset$

The core C(v) has a representation

$$\mathcal{C}(\mathbf{v}) = \operatorname{conv}\{\mathbf{x}_1, \ldots, \mathbf{x}_k\},\$$

where x_1, \ldots, x_k are the vertices of C(v).

Vertex enumeration problem

- Find *all* vertices of the core C(v)
- A hard problem studied in polyhedral geometry

This problem has a closed-form solution for some games.

A game v is supermodular if

$$v(A) + v(B) \le v(A \cup B) + v(A \cap B)$$
 for all $A, B \subseteq N$.

Proposition

The following are equivalent.

- Game v is supermodular.
- For all $A, B \subseteq N$ with $A \subseteq B$, and each $i \in N \setminus B$,

$$v(A \cup i) - v(A) \le v(B \cup i) - v(B).$$

It is about marginal contributions of players

- Given a permutation π of N, the rank of player i is $\pi(i)$
- The coalition preceding player *i* is then

$$A_i^{\pi} = \{j \in N \mid \pi(j) < \pi(i)\}.$$

Definition

A marginal vector is an allocation $\mathbf{x}^{\pi} \in \mathbb{R}^{n}$ such that

$$\mathbf{x}_i^{\pi} = \mathbf{v}(A_i^{\pi} \cup i) - \mathbf{v}(A_i^{\pi}), \qquad i \in \mathbf{N}.$$

Example: Marginal vectors in a supermodular game

This three-player game is supermodular: $v(A) = \begin{cases} 0 & |A| \le 1, \\ 1 & |A| = 2, \\ 3 & |A| = 3. \end{cases}$

Permutation	Marginal vector
123	(0, 1, 2)
132	(0, 2, 1)
213	(1, 0, 2)
231	(2, 0, 1)
312	(1, 2, 0)
321	(2, 1, 0)

Observe that each marginal vector is a core allocation.

Cores of supermodular games

Theorem

The following are equivalent.

- Game v is supermodular
- The vertices of $\mathcal{C}(v)$ are precisely marginal vectors

$$v(A) = \begin{cases} 0 & |A| = 1, \\ 1 & |A| = 2, \\ 3 & |A| = 3. \end{cases}$$
 (2,0,1) (1,2,0) (0,2,1)

Pros

- Simple definition
- Core allocations are stable
- Known for some games

Cons

- May be empty
- May be large
- Hard to compute

We can seek solution concepts based on different criteria:

- Nonemptiness
- Single allocation
- Fairness