Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk School of Computer Science Carnegie Mellon University Pittsburgh, Pennsylvania 15213 jrs@cs.cmu.edu

+ additional notes by Petr Felkel, CTU Prague, 2020

Version from 8.10.2020

Expansion

1020

 Sorted sequence of non-overlapping machine native numbers (float, double) – each with its own exponent and significand (mantissa)

 Sorted by absolute values 						
 Signum of the highest FP number is the signum of the expansion 						
 Zero members of the expansion will be not added. 						
$ x_4 > x_3 > x_2 > x_1 $	1018.7195					

-1.3 0.020 -0.0005 represents x = +1018.7195approximated $x \sim +1020 = x_4$

Expansions are not unique

binary	decimal
1100 + (-10.1)	12 + (-2.5)
= 1100.0 - 10.1	12 – 2.5
= 1001 + 0.1	9 + 0.5
= 1000 + 1 + 0.1	8+1+0.5

All represent the value 1001.1 ... 9.5

Meaning of symbols

p-bit floating point operations with exact rounding (float, double):

- \oplus addition
- \ominus subtraction
- \otimes multiplication

Exact rounding

Operations with exact rounding to p-bits (32 / 64) store result:

exact results store exact, and non-precise results store rounded

More than 4-bits arithmetic	With exact rounding to 4-bits	
$010 \times 011 = 100$	$010\otimes 011 = 100$	if (possible)
$2 \times 3 = 6$	$2 \otimes 3 = 6$	store exact
		else
$111 \times 101 = 100011$	$111 \otimes 101 = 1.001 \times 2^5$	store rounded
$7 \times 5 = 35$	$7 \otimes 5 = 36$	

Operations on expansions

IEEE 754 standard on floating point format and computing rules. Operations on expansions require *exact rounding* of each op. to 32 / 64bit.

Fast-Two-Sum: (a>=b) -> (x, y), a+b=x+y
Two-Sum (a, b) -> (x, y)
Linear-Expansion-Sum (exp_a interleaved with exp_b) -> expansion

Theorem 1 (Dekker [4]) Let a and b be p-bit floating-point numbers such that $|a| \ge |b|$. Then the following algorithm will produce a nonoverlapping expansion x + y such that a + b = x + y, where x is an approximation to a + b and yrepresents the roundoff error in the calculation of x. FAST-TWO-SUM(a, b)

- $\begin{array}{c} x \Leftarrow a \oplus b \\ b \leftarrow x \end{array}$
 - $b_{virtual} \Leftarrow x \ominus a$ $y \Leftarrow b \ominus b_{virtual}$ return (x, y)
- // Rounded sum = approximation
- // What was truly added Rounded
- // round-off error

 $= a \oplus b + b \ominus b_{virtual}$

+

a + b = x + y

Fast TwoSum with result rounded up

Fast TwoSum with result rounded down

Theorem 2 (Knuth [10]) Let a and b be p-bit floating-point numbers, where $p \ge 3$. Then the following algorithm will produce a nonoverlapping expansion x + y such that a + b = x + y.

TWO-SUM(a, b) $\rightarrow x \Leftarrow a \oplus b$ // Rounded sum = approximation 2 \rightarrow *b*virtual $\Leftarrow x \ominus a$ // What b was truly added – Rounded for a > b3 $a_{virtual} \Leftarrow x \ominus b_{virtual}$ // What *a* was truly added – Rounded 4 \rightarrow *b*roundoff $\Leftarrow b \ominus b$ virtual for b > a // round-off error of b $\begin{array}{lll}5 & a_{\text{roundoff}} \leftarrow u \subset \forall n \text{ turn},\\6 & y \leftarrow a_{\text{roundoff}} \oplus b_{\text{roundoff}}\\7 & \text{return}(x, y)\end{array}$ $a_{roundoff} \Leftarrow a \ominus a_{virtual}$ // round-off error of a

Sum of two expansions (4-bit arithmetic)

Input: 1111+0.1001 and 1100 + 0.1

Output: 11100 + 0 + 0.0001

Zeroes slow down the computation – removed afterwards

Merge both input expansions into a single sequence g respecting the order of magnitudes

1111 + 1100 + 0.1001 + 0.1

Use LINEAR-EXPANSION-SUM (g)

Figure 1: Operation of LINEAR-EXPANSION-SUM. The expansions g and h are illustrated with their most significant components on the left. $Q_i + q_i$ maintains an approximate running total. The FAST-TWO-SUM operations in the bottom row exist to clip a high-order bit off each q_i term, if necessary, before outputting it.

Multiplication

Multiplies two p-bit values a and b

- 1. Split both p-bit values into two halve (with ~p/2 bits)
- 2. perform four exact multiplications on these fragments. $a_{hi} \times a_{hi}, a_{hi} \times a_{lo}, a_{lo} \times a_{hi}, a_{lo} \times a_{lo},$

The trick is to find a way to split a floating-point value in two.

SPLIT(a) operation

- Splits p bits into two non-overlapping halves $\left(\left\lfloor \frac{p}{2} \right\rfloor$ bits a_{hi} and $\left\lfloor \frac{p}{2} \right\rfloor 1$ bits a_{lo})
- Missing bit is hidden in the signum of a_{lo}
- Example

7bit number splits to two 3 bit significands 1001001 splits to 1010000 (101×2^4) and -111 73 = 80 - 7 **Theorem 4 (Dekker [4])** Let a be a p-bit floating-point number, where $p \geq 3$. The following algorithm will produce a $\lfloor \frac{p}{2} \rfloor$ -bit value a_{hi} and a nonoverlapping $(\lceil \frac{p}{2} \rceil - 1)$ -bit value a_{10} such that $|a_{hi}| \ge |a_{10}|$ and $a = a_{hi} + a_{10}$. SPLIT(a) $c \Leftarrow (2^{\lceil p/2 \rceil} + 1) \otimes a$ 1 2 $a_{\mathsf{big}} \Leftarrow c \ominus a$ 3 $a_{hi} \Leftarrow c \ominus a_{big}$ $a_{lo} \Leftarrow a \ominus a_{hi}$ 4 return (a_{hi}, a_{lo})

Theorem 5 (Veltkamp) Let a and b be p-bit floating-point numbers, where $p \ge 4$. The following algorithm will produce a nonoverlapping expansion x + y such that ab = x + y.

$$\begin{array}{ll} \text{Two-Product}(a,b) \\ 1 & x \Leftarrow a \otimes b \\ 2 & (a_{\text{hi}},a_{\text{lo}}) = \text{SpLIT}(a) \\ 3 & (b_{\text{hi}},b_{\text{lo}}) = \text{SpLIT}(b) \\ 4 & err_1 \Leftarrow x \ominus (a_{\text{hi}} \otimes b_{\text{hi}}) \\ 5 & err_2 \Leftarrow err_1 \ominus (a_{\text{lo}} \otimes b_{\text{hi}}) \\ 6 & err_3 \Leftarrow err_2 \ominus (a_{\text{hi}} \otimes b_{\text{lo}}) \\ 7 & y \Leftarrow (a_{\text{lo}} \otimes b_{\text{lo}}) \ominus err_3 \\ 8 & \text{return} (x,y) \end{array}$$

Demonstration of SPLIT splitting a five-bit number into two two-bit numbers

$$a = 1 1 1 1 0 1$$

$$2^{3}a = \frac{1 1 1 1 0 1}{1 0 0 0 0 0} \times 2^{3}$$

$$c = (2^{3} + 1) \otimes a = 1 0 0 0 0 0 \times 2^{4}$$

$$a = \frac{1 1 1 1 0 1}{1 1 0 0} \times 2^{3}$$

$$a_{\text{hi}} = c \ominus a = 1 1 1 1 0 0 \times 2^{3}$$

$$a_{\text{hi}} = c \ominus a_{\text{hig}} = 1 0 0 0 \times 2^{1}$$

$$a_{10} = a \ominus a_{\text{hi}} = -1 1$$

Demonstration of TWO-PRODUCT in six-bit arithmetic

a	=									1	1	1	0	1	1	
b	=									1	1	1	0	1	1	
x	=	$a\otimes b$	=	1	1	0	1	1	0							$\times 2^{6}$
		$a_{{f hi}}\otimes b_{{f hi}}$	=	1	1	0	0	0	1							$\times 2^{6}$
err_1	=	$x \ominus (a_{hi} \otimes b_{hi})$	=				1	0	1	0	0	0				$\times 2^3$
		$a_{\mathbf{lo}}\otimes b_{\mathbf{hi}}$	=					1	0	1	0	1	0			$\times 2^2$
err_2	=	$err_1 \ominus (a_{10} \otimes b_{hi})$	=					1	0	0	1	1	0			$\times 2^2$
		$a_{{f hi}}\otimes b_{{f lo}}$	=					1	0	1	0	1	0			$\times 2^2$
err_3	=	$err_2 \ominus (a_{hi} \otimes b_{lo})$	=				·				1	0	0	0	0	
		$a_{10} \otimes b_{10}$	=									1	0	0	1	
-y	=	$err_3 \ominus (a_{10} \otimes b_{10})$	=								1	1	0	0	1	-

The resulting expansion is $110110 \times 2^6 + 11001$

Adaptive arithmetic

- Expensive avoid when possible
- Some applications need results with absolute error below a threshold
- Set of procedures with different precision (& speed) + error bounds
- For each input compute the error bounds and choose the procedure But
- Sometimes hard to determine error before computation
- Especially when relative error needed like sign of expression comp.
 - Result can be much larger than error bound exact arithmetic will suffice
 - Result can be near zero must be evaluated exactly

Shewchuk predicates

- Compute a sequence of increasingly accurate results
- Testing each for accuracy
- Not using separate procedures BUT
- Using intermediate results as steps to more accurate results (work already done is not discarded, but refined)
- Idea: presented routines can be split to two parts
 - Line 1 gives an approximate result run each time
 - Remaining lines compute the roundoff error delayed until needed, if ever ...

Principle of adaptive computation

Distance of two points $(b_x - a_x)^2 + (b_y - a_y)^2$ Store $b_x - a_x$ as $x_1 + y_1$ and $b_y - a_y$ as $x_2 + y_2$ $(x_1^2 + 2x_1y_1 + y_1^2) + (x_2^2 + 2x_2y_2 + y_2^2)$

Reorder terms according to their size

$$(x_1^2 + x_2^2) + (2x_1y_1 + 2x_2y_2) + (y_1^2 + y_2^2)$$

Compute them only if needed

 \vec{v}

q

D

Orientation predicate - definition

orientation
$$(p, q, r)$$
 = sign $\begin{pmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{pmatrix} =$
= sign $((q_x - p_x)(r_y - p_y) - (q_y - p_y)(r_x - p_x)),$
where point $p = (p_x, p_y), ...$
= third coordinate of = $(\vec{u} \times \vec{v}),$

Three points

orientation(p, q, r) =

- lie on common line
- form a left turn
- form a right turn

= 0 = +1 (positive)

= -1 (negative)

Experiment with orientation predicate

Felkel: Computational geometry