Robust Adaptive Floating-Point Geometric Predicates

Jonathan Richard Shewchuk
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
jrs@cs.cmu.edu

+ additional notes by Petr Felkel, CTU Prague, 2020

Expansion

- Sorted sequence of non-overlapping machine native numbers (float, double) - each with its own exponent and significand (mantissa)
- Sorted by absolute values
- Signum of the highest FP number is the signum of the expansion
- Zero members of the expansion will be not added.
represents $\quad x=+1018.7195$
approximated $x \sim+1020=x_{4}$

Expansions are not unique

binary

$1100+(-10.1)$
$=1100.0-10.1$
$=1001+0.1$
$=1000+1+0.1$
decimal
$\ldots 12+(-2.5)$
... $12-2.5$
... $9+0.5$
... $8+1+0.5$

All represent the value 1001.1 ... 9.5

Meaning of symbols

p-bit floating point operations with exact rounding (float, double):
\oplus addition
\ominus subtraction
\otimes multiplication

Exact rounding

Operations with exact rounding to p-bits (32 / 64) store result:

exact results store exact, and

 non-precise results store roundedMore than 4-bits arithmetic

$$
\begin{aligned}
010 \times 011 & =100 \\
2 \times 3 & =6 \\
111 \times 101 & =100011 \\
7 \times 5 & =35
\end{aligned}
$$

With exact rounding to 4-bits

$$
\left.\begin{array}{cl}
010 \otimes 011 & =100 \\
2 \otimes 3 & =6
\end{array} \quad \begin{array}{l}
\text { if (possible) } \\
\text { store exact }
\end{array}\right] \quad \begin{aligned}
& \text { else } \\
& 111 \otimes 101=1.001 \times 2^{5}
\end{aligned} \quad \text { store rounded }
$$

Operations on expansions

IEEE 754 standard on floating point format and computing rules.
Operations on expansions require exact rounding of each op. to 32 / 64bit.
Fast-Two-Sum: ($\mathrm{a}>=\mathrm{b}$) -> (x, y), $\quad \mathrm{a}+\mathrm{b}=\mathrm{x}+\mathrm{y}$
Two-Sum (a, b) -> (x, y)
Linear-Expansion-Sum (exp_a interleaved with exp_b) -> expansion

Split (a) -> (a_hi, a_lo),
a=a_hi+a_lo

Two-Product (a, b) -> (x, y)

Theorem 1 (Dekker [4]) Let a and b be p-bit floating-point numbers such that $|a| \geq|b|$. Then the following algorithm will produce a nonoverlapping expansion $x+y$ such that $a+b=x+y$, where x is an approximation to $a+b$ and y represents the roundoff error in the calculation of x.
$\frac{\text { Fast-Two-Sum }(a, b)}{1 \quad x \Leftarrow a \oplus b}$
// Rounded sum = approximation
$2 \quad b_{\text {virtual }} \Leftarrow x \ominus a \quad / /$ what was truly added - Rounded
$3 \quad y \Leftarrow b \ominus b_{\text {virtual }} \quad / /$ round-off error
4 return (x, y)

Fast-Two-Sum (a, b)
$1 \quad x \Leftarrow a \oplus b$
$2 \quad b_{\text {virtual }} \Leftarrow x \ominus a$
$3 \quad y \Leftarrow b \ominus b_{\text {virtual }}$ 4 return (x, y)

$$
\begin{aligned}
a+b & =x+y \\
& =a \oplus b+b \ominus b_{\text {virtual }}
\end{aligned}
$$

Fast TwoSum with result rounded up

$$
\begin{aligned}
& \text { Correct } \\
& a=5081 \\
& b=93.5 \\
& 5174.5 \\
& \text { Rounded } \\
& \text { Really added } \\
& \text { Correction } \\
& a=5081 \\
& x=5175 \\
& -a=-5081 \\
& b_{\text {virtual }}=94 \\
& y=-0.5 \\
& (a+b)=(x+y) \\
& 5081+93.5=(5175-0.5)
\end{aligned}
$$

Fast TwoSum with result rounded down

$$
\begin{aligned}
& \text { Correct }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rounded } \\
& \text { Really added } \\
& \text { Correction } \\
& a=5081 \\
& x=5174 \\
& -a=-5081 \\
& -b_{\text {virtual }}=-94 \\
& b_{\text {virtual }}=93 \\
& y=0.4 \\
& (a+b)=(x+y) \\
& 5081+93.4=(5174+0.4)
\end{aligned}
$$

Theorem 2 (Knuth [10]) Let a and b be p-bit floating-point numbers, where $p \geq 3$. Then the following algorithm will produce a nonoverlapping expansion $x+y$ such that $a+b=$ $x+y$.

Two-Sum (a, b)
$1 \rightarrow x \Leftarrow a \oplus b \quad / /$ Rounded sum = approximation
$2 \rightarrow b_{\text {virtual }} \Leftarrow x \ominus a$
// What b was truly added - Rounded for $a>b$
$3 \quad a_{\text {virtual }} \Leftarrow x \ominus b_{\text {virtual } / / \text { What } a \text { was truly added }- \text { Rounded }}$
$4 \rightarrow b_{\text {roundoff }} \Leftarrow b \ominus b_{\text {virtual }}$ for $b>a$ r rund.off erro of b
$5 \quad a_{\text {roundoff }} \Leftarrow a \ominus a_{\text {virtual //r rund-offerror of } a}$
$6 \quad y \Leftarrow a_{\text {roundoff }} \oplus b_{\text {roundoff }}$
$7 \rightarrow$ return (x, y)

Sum of two expansions (4-bit arithmetic)

Input: $\quad 1111+0.1001$ and $1100+0.1$
Output: $\quad 11100+0+0.0001$
Zeroes slow down the computation - removed afterwards

Merge both input expansions into a single sequence g respecting the order of magnitudes

$$
1111+1100+0.1001+0.1
$$

Use LINEAR-EXPANSION-SUM (g)

Figure 1: Operation of Linear-Expansion-Sum. The expansions g and h are illustrated with their most significant components on the left. $Q_{i}+q_{i}$ maintains an approximate running total. The Fast-Two-Sum operations in the bottom row exist to clip a high-order bit off each q_{i} term, if necessary, before outputting it.

Multiplication

Multiplies two p-bit values a and b

1. Split both p-bit values into two halve (with $\sim p / 2$ bits)
2. perform four exact multiplications on these fragments.

$$
a_{h i} \times a_{h i}, a_{h i} \times a_{l o}, a_{l o} \times a_{h i}, a_{l o} \times a_{l o}
$$

The trick is to find a way to split a floating-point value in two.

SPLIT(a) operation

- Splits p bits into two non-overlapping halves
($\left\lfloor\frac{p}{2}\right\rfloor$ bits a_{hi} and $\left\lceil\frac{p}{2}\right\rceil-1$ bits $\mathrm{a}_{l o}$)
- Missing bit is hidden in the signum of $\mathrm{a}_{l o}$
- Example

7bit number splits to two 3 bit significands
1001001 splits to $1010000\left(101 \times 2^{4}\right)$ and -111

$$
73=80-7
$$

Theorem 4 (Dekker [4]) Let a be a p-bit floating-point number, where $p \geq 3$. The following algorithm will produce $a\left\lfloor\frac{p}{2}\right\rfloor$-bit value a_{hi} and a nonoverlapping $\left(\left\lceil\frac{p}{2}\right\rceil-1\right)$-bit value a_{lo} such that $\left|a_{\mathrm{hi}}\right| \geq\left|a_{\mathrm{lo}}\right|$ and $a=a_{\mathrm{hi}}+a_{\mathrm{lo}}$. $\operatorname{SPLIT}(a)$

$$
\begin{array}{ll}
1 & c \Leftarrow\left(2^{\lceil p / 2\rceil}+1\right) \otimes a \\
2 & a_{\mathrm{big}} \Leftarrow c \ominus a \\
3 & a_{\mathrm{hi}} \Leftarrow c \ominus a_{\mathrm{big}} \\
4 & a_{\mathrm{lo}} \Leftarrow a \ominus a_{\mathrm{hi}} \\
5 & \text { return }\left(a_{\mathrm{hi}}, a_{\mathrm{lo}}\right)
\end{array}
$$

Theorem 5 (Veltkamp) Let a and b be p-bit floating-point numbers, where $p \geq 4$. The following algorithm will produce a nonoverlapping expansion $x+y$ such that $a b=x+y$.

```
Two-Product \((a, b)\)
\(1 \quad x \Leftarrow a \otimes b\)
\(2\left(a_{\mathrm{hi}}, a_{\mathrm{lo}}\right)=\operatorname{SpLIT}(a)\)
\(3 \quad\left(b_{\mathrm{hi}}, b_{\mathrm{lo}}\right)=\operatorname{Split}(b)\)
\(4 \quad e r r_{1} \Leftarrow x \ominus\left(a_{\mathrm{hi}} \otimes b_{\mathrm{hi}}\right)\)
\(5 \quad e r r_{2} \Leftarrow e r r_{1} \ominus\left(a_{\mathrm{lo}} \otimes b_{\mathrm{hi}}\right)\)
\(6 \quad e r r_{3} \Leftarrow e r r_{2} \ominus\left(a_{\mathrm{hi}} \otimes b_{\mathrm{lo}}\right)\)
\(7 \quad y \Leftarrow\left(a_{\mathrm{lo}} \otimes b_{\mathrm{lo}}\right) \ominus \operatorname{err}_{3}\)
8 return \((x, y)\)
```


Demonstration of SPLIT splitting a five-bit number into two two-bit numbers

$$
\begin{aligned}
& a_{\mathrm{hi}}=c \ominus a_{\mathrm{big}}=\quad \begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & \times 2^{1}
\end{array} \\
& a_{1 \mathrm{o}}=a \ominus a_{\mathrm{hi}} \quad=\quad-\quad 11
\end{aligned}
$$

Demonstration of TWO-PRODUCT in six-bit arithmetic

$$
\begin{aligned}
& \begin{array}{llllll}
a & = \\
b & =
\end{array} \quad \begin{array}{lllll}
1 & 1 & 1 & 0 & 1 \\
1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1
\end{array} \\
& x=\quad a \otimes b \quad=\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0
\end{array} \\
& \begin{array}{clllllllllll}
a_{\mathrm{hi}} \otimes b_{\mathrm{hi}} \\
\text { err }_{1}= & = & \left.\begin{array}{lllllllll}
1 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{array} a_{\mathrm{hi}} \otimes b_{\mathrm{hi}}\right) & = & & & 1 & 0 & 1 & 0 & 0 & 0
\end{array} \quad \times 2^{6} \\
& a_{\mathrm{lo}} \otimes b_{\mathrm{hi}} \quad=\quad \quad \begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 \\
\hline
\end{array} \\
& \operatorname{err}_{2}=\operatorname{err}_{1} \ominus\left(a_{10} \otimes b_{\mathrm{hi}}\right)=\quad \begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0
\end{array} \quad \times 2^{2} \\
& \begin{array}{lllllllllllll}
a_{\mathrm{hi}} \otimes b_{\mathrm{lo}} & = & \begin{array}{llllllllll}
& 0 & 1 & 0 & 1 & 0 & & & \times 2^{2} \\
& & & & - & 1 & 0 & 0 & 0 & 0
\end{array} &
\end{array}
\end{aligned}
$$

The resulting expansion is $110110 \times 2^{6}+11001$

Adaptive arithmetic

- Expensive - avoid when possible
- Some applications need results with absolute error below a threshold
- Set of procedures with different precision (\& speed) + error bounds
- For each input - compute the error bounds and choose the procedure But
- Sometimes hard to determine error before computation
- Especially when relative error needed - like sign of expression comp.
- Result can be much larger than error bound - exact arithmetic will suffice
- Result can be near zero - must be evaluated exactly

Shewchuk predicates

- Compute a sequence of increasingly accurate results
- Testing each for accuracy
- Not using separate procedures BUT
- Using intermediate results as steps to more accurate results (work already done is not discarded, but refined)
- Idea: presented routines can be split to two parts
- Line 1 gives an approximate result - run each time
- Remaining lines compute the roundoff error - delayed until needed, if ever ...

Principle of adaptive computation

Distance of two points

$$
\left(b_{x}-a_{x}\right)^{2}+\left(b_{y}-a_{y}\right)^{2}
$$

Store $b_{x}-a_{x}$ as $x_{1}+y_{1}$
and $\quad b_{y}-a_{y}$ as $x_{2}+y_{2}$

$$
\left(x_{1}^{2}+2 x_{1} y_{1}+y_{1}^{2}\right)+\left(x_{2}^{2}+2 x_{2} y_{2}+y_{2}^{2}\right)
$$

Reorder terms according to their size

$$
\left(x_{1}^{2}+x_{2}^{2}\right)+\left(2 x_{1} y_{1}+2 x_{2} y_{2}\right)+\left(y_{1}^{2}+y_{2}^{2}\right)
$$

Compute them only if needed

$$
\left(b_{x}-a_{x}\right)^{2}+\left(b_{y}-a_{y}\right)^{2}
$$

Orientation predicate - definition

Experiment with orientation predicate

