Multiagent Systems (BE4M36MAS)

Solving Normal-Form Games

Branislav Bošanský

Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

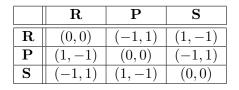
October 17, 2019

Previously ... on multi-agent systems.

- **1** Formal definition of a game $\mathcal{G} = (\mathcal{N}, \mathcal{A}, u)$
 - \mathcal{N} a set of players
 - *A* a set of actions
 - u outcome for each combination of actions
- 2 Pure strategies
- 3 Dominance of strategies
- 4 Nash equilibrium

... and now we continue ...

Rock Paper Scissors



What is the best strategy to play in Rock-Paper-Scissors?

Every time we are about to play we randomly select an action we are going to use.

The concept of pure strategies is not sufficient.

Definition (Mixed Strategies)

Let $\mathcal{G} = (\mathcal{N}, \mathcal{A}, u)$ be a normal-form game. Then the set of *mixed* strategies \mathcal{S}_i for player *i* is the set of all probability distributions over \mathcal{A}_i ; $\mathcal{S}_i = \Delta(\mathcal{A}_i)$.

Player selects a pure strategy according to the probability distribution.

We extend the utility function to correspond to expected utility:

$$u_i(s) = \sum_{a \in A} u_i(a) \prod_{j \in \mathcal{N}} s_j(a_j)$$

We can extend existing concepts (dominance, best response, ...) to mixed strategies.

Dominance

Definition (Strong Dominance)

Let $\mathcal{G} = (\mathcal{N}, \mathcal{A}, u)$ be a normal-form game. We say that s_i strongly dominates s'_i if $\forall s_{-i} \in \mathcal{S}_{-i}, u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$.

Definition (Weak Dominance)

Let $\mathcal{G} = (\mathcal{N}, \mathcal{A}, u)$ be a normal-form game. We say that s_i weakly dominates s'_i if $\forall s_{-i} \in \mathcal{S}_{-i}, u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ and $\exists s_{-i} \in \mathcal{S}_{-i}$ such that $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$.

Definition (Very Weak Dominance)

Let $\mathcal{G} = (\mathcal{N}, \mathcal{A}, u)$ be a normal-form game. We say that s_i very weakly dominates s'_i if $\forall s_{-i} \in \mathcal{S}_{-i}, u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$.

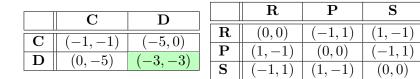
Definition (Best Response)

Let $\mathcal{G} = (\mathcal{N}, \mathcal{A}, u)$ be a normal-form game and let $BR_i(s_{-i}) \subseteq \mathcal{S}_i$ such that $s_i^* \in BR_i(s_{-i})$ iff $\forall s_i \in \mathcal{S}_i, u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}).$

Definition (Nash Equilibrium)

Let $\mathcal{G} = (\mathcal{N}, \mathcal{A}, u)$ be a normal-form game. Strategy profile $s = \langle s_1, \dots, s_n \rangle$ is a Nash equilibrium iff $\forall i \in \mathcal{N}, s_i \in BR_i(s_{-i})$.

Existence of Nash equilibria?



Theorem (Nash)

Every game with a finite number of players and action profiles has at least one Nash equilibrium in mixed strategies.

Definition (Support)

The *support* of a mixed strategy s_i for a player i is the set of pure strategies $\text{Supp}(s_i) = \{a_i | s_i(a_i) > 0\}.$

Question

Assume Nash equilibrium (s_i, s_{-i}) and let $a_i \in \text{Supp}(s_i)$ be an (arbitrary) pure strategy from the support of s_i . Which of the following possibilities can hold?

$$u_i(a_i, s_{-i}) < u_i(s_i, s_{-i})$$

$$u_i(a_i, s_{-i}) = u_i(s_i, s_{-i})$$

 $u_i(a_i, s_{-i}) > u_i(s_i, s_{-i})$

Support of Nash Equilibria

Corollary

Let $s \in S$ be a Nash equilibrium and $a_i, a'_i \in A_i$ are actions from the support of s_i . Now, $u_i(a_i, s_{-i}) = u_i(a'_i, s_{-i})$.

Can we exploit this fact to find a Nash equilibrium?

Finding Nash Equilibria

		R
U	(2,1)	(0, 0)
D	(0,0)	(1,2)

Column player (player 2) plays L with probability p and R with probability (1-p). In NE it holds

$$\mathbb{E}u_1(\mathbf{U}) = \mathbb{E}u_1(\mathbf{D})$$
$$2p + 0(1-p) = 0p + 1(1-p)$$
$$p = \frac{1}{3}$$

Similarly, we can compute the strategy for player 1 arriving at $(\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3})$ as Nash equilibrium.

Can we use the same approach here?

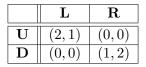
	L	С	R
U	(2,1)	(0, 0)	(0, 0)
M	(0,0)	(1,2)	(0, 0)
D	(0, 0)	(0, 0)	(-1, -1)

Not really... No strategy s_i of the row player ensures $u_{-i}(s_i,L)=u_{-i}(s_i,C)=u_{-i}(s_i,R)$:-(

Can something help us?

Iterated removal of dominated strategies. Search for a possible support (enumeration of all possibilities).

Maxmin



Recall that there are multiple Nash equilibria in this game. Which one should a player play? This is a known equilibrium-selection problem.

Playing a Nash strategy does not give any guarantees for the expected payoff. If we want guarantees, we can use a different concept – maxmin strategies.

Definition (Maxmin)

The maxmin strategy for player i is $\arg \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$ and the maxmin value for player i is $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$.

Definition (Maxmin)

The maxmin strategy for player i is $\arg \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$ and the maxmin value for player i is $\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$.

Definition (Minmax, two-player)

In a two-player game, the minmax strategy for player i against player -i is $\arg\min_{s_i}\max_{s_{-i}}u_{-i}(s_i, s_{-i})$ and the minmax value for player -i is $\min_{s_i}\max_{s_{-i}}u_{-i}(s_i, s_{-i})$.

Maxmin strategies are conservative strategies against a worst-case opponent.

Minmax strategies represent punishment strategies for player -i.

What about zero-sum case? How do

 \blacksquare player i 's maxmin, $\max_{s_i} \min_{s_{-i}} u_i(s_i,s_{-i})$, and

■ player *i*'s minmax, $\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$ relate?

$$\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i}) = -\min_{s_i} \max_{s_{-i}} u_{-i}(s_i, s_{-i})$$

... but we can prove something stronger ...

Theorem (Minimax Theorem (von Neumann, 1928))

In any finite, two-player zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and the minmax value of his opponent.

Consequences:

- $1 \max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i}) = \min_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$
- 2 we can safely play Nash strategies in zero-sum games
- 3 all Nash equilibria have the have the same payoff (by convention, the maxmin value for player 1 is called *value of the game*).

We can now compute Nash equilibrium for two-player, zero-sum games using a linear programming:

s.t.
$$\sum_{a_1 \in \mathcal{A}_1} s(a_1)u_1(a_1, a_2) \ge U \qquad (1)$$
$$\sum_{a_1 \in \mathcal{A}_1} s(a_1)u_1(a_1, a_2) \ge U \qquad \forall a_2 \in \mathcal{A}_2 \qquad (2)$$
$$\sum_{a_1 \in \mathcal{A}_1} s(a_1) = 1 \qquad (3)$$
$$s(a_1) \ge 0 \qquad \forall a_1 \in \mathcal{A}_1 \qquad (4)$$

Computing a Nash equilibrium in zero-sum normal-form games can be done in polynomial time.