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Artificial Intelligence Center,
Department of Computer Science,
Faculty of Electrical Engineering,

Czech Technical University in Prague

branislav.bosansky@agents.fel.cvut.cz

October 17, 2019



Previously ... on multi-agent systems.

1 Formal definition of a game G = (N ,A, u)

N – a set of players
A – a set of actions
u – outcome for each combination of actions

2 Pure strategies

3 Dominance of strategies

4 Nash equilibrium



... and now we continue ...



Rock Paper Scissors

R P S

R (0, 0) (−1, 1) (1,−1)

P (1,−1) (0, 0) (−1, 1)

S (−1, 1) (1,−1) (0, 0)

What is the best strategy to play in Rock-Paper-Scissors?

Every time we are about to play we randomly select an action we
are going to use.

The concept of pure strategies is not sufficient.



Mixed Strategies

Definition (Mixed Strategies)

Let G = (N ,A, u) be a normal-form game. Then the set of mixed
strategies Si for player i is the set of all probability distributions
over Ai; Si = ∆(Ai).

Player selects a pure strategy according to the probability
distribution.

We extend the utility function to correspond to expected utility:

ui(s) =
∑
a∈A

ui(a)
∏
j∈N

sj(aj)

We can extend existing concepts (dominance, best response, ...) to
mixed strategies.



Dominance

Definition (Strong Dominance)

Let G = (N ,A, u) be a normal-form game. We say that si
strongly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) > ui(s

′
i, s−i).

Definition (Weak Dominance)

Let G = (N ,A, u) be a normal-form game. We say that si weakly
dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s

′
i, s−i) and

∃s−i ∈ S−i such that ui(si, s−i) > ui(s
′
i, s−i).

Definition (Very Weak Dominance)

Let G = (N ,A, u) be a normal-form game. We say that si very
weakly dominates s′i if ∀s−i ∈ S−i, ui(si, s−i) ≥ ui(s

′
i, s−i).



Best Response and Equilibria

Definition (Best Response)

Let G = (N ,A, u) be a normal-form game and let BRi(s−i) ⊆ Si
such that s∗i ∈ BRi(s−i) iff ∀si ∈ Si, ui(s∗i , s−i) ≥ ui(si, s−i).

Definition (Nash Equilibrium)

Let G = (N ,A, u) be a normal-form game. Strategy profile
s = 〈s1, . . . , sn〉 is a Nash equilibrium iff ∀i ∈ N , si ∈ BRi(s−i).



Existence of Nash equilibria?

C D

C (−1,−1) (−5, 0)

D (0,−5) (−3,−3)

R P S

R (0, 0) (−1, 1) (1,−1)

P (1,−1) (0, 0) (−1, 1)

S (−1, 1) (1,−1) (0, 0)

Theorem (Nash)

Every game with a finite number of players and action profiles has
at least one Nash equilibrium in mixed strategies.



Support of Nash Equilibria

Definition (Support)

The support of a mixed strategy si for a player i is the set of pure
strategies Supp(si) = {ai|si(ai) > 0}.

Question

Assume Nash equilibrium (si, s−i) and let ai ∈ Supp(si) be an
(arbitrary) pure strategy from the support of si. Which of the
following possibilities can hold?

ui(ai, s−i) < ui(si, s−i)

ui(ai, s−i) = ui(si, s−i)

ui(ai, s−i) > ui(si, s−i)



Support of Nash Equilibria

Corollary

Let s ∈ S be a Nash equilibrium and ai, a
′
i ∈ Ai are actions from

the support of si. Now, ui(ai, s−i) = ui(a
′
i, s−i).

Can we exploit this fact to find a Nash equilibrium?



Finding Nash Equilibria

L R

U (2, 1) (0, 0)

D (0, 0) (1, 2)

Column player (player 2) plays L with probability p and R with
probability (1− p). In NE it holds

Eu1(U) = Eu1(D)

2p + 0(1− p) = 0p + 1(1− p)

p =
1

3

Similarly, we can compute the strategy for player 1 arriving at
(23 ,

1
3), (13 ,

2
3) as Nash equilibrium.



Finding Nash Equilibria

Can we use the same approach here?

L C R

U (2, 1) (0, 0) (0, 0)

M (0, 0) (1, 2) (0, 0)

D (0, 0) (0, 0) (−1,−1)

Not really... No strategy si of the row player ensures
u−i(si, L) = u−i(si, C) = u−i(si, R) :-(

Can something help us?
Iterated removal of dominated strategies.

Search for a possible support (enumeration of all possibilities).



Maxmin

L R

U (2, 1) (0, 0)

D (0, 0) (1, 2)

Recall that there are multiple Nash equilibria in this game. Which
one should a player play? This is a known equilibrium-selection
problem.

Playing a Nash strategy does not give any guarantees for the
expected payoff. If we want guarantees, we can use a different
concept – maxmin strategies.

Definition (Maxmin)

The maxmin strategy for player i is arg maxsi mins−i ui(si, s−i)
and the maxmin value for player i is maxsi mins−i ui(si, s−i).



Maxmin and Minmax

Definition (Maxmin)

The maxmin strategy for player i is arg maxsi mins−i ui(si, s−i)
and the maxmin value for player i is maxsi mins−i ui(si, s−i).

Definition (Minmax, two-player)

In a two-player game, the minmax strategy for player i against
player −i is arg minsi maxs−i u−i(si, s−i) and the minmax value
for player −i is minsi maxs−i u−i(si, s−i).

Maxmin strategies are conservative strategies against a worst-case
opponent.

Minmax strategies represent punishment strategies for player −i.



Zero-sum case

What about zero-sum case? How do

player i’s maxmin, maxsi mins−i ui(si, s−i), and

player i’s minmax, minsi maxs−i u−i(si, s−i)

relate?

max
si

min
s−i

ui(si, s−i) = −min
si

max
s−i

u−i(si, s−i)

... but we can prove something stronger ...



Maxmin and Von Neumann’s Minimax Theorem

Theorem (Minimax Theorem (von Neumann, 1928))

In any finite, two-player zero-sum game, in any Nash
equilibrium each player receives a payoff that is equal
to both his maxmin value and the minmax value of
his opponent.

Consequences:

1 maxsi mins−i ui(si, s−i) = mins−i maxsi ui(si, s−i)

2 we can safely play Nash strategies in zero-sum games

3 all Nash equilibria have the have the same payoff (by
convention, the maxmin value for player 1 is called value of
the game).



Computing NE in Zero-Sum Games

We can now compute Nash equilibrium for two-player, zero-sum
games using a linear programming:

max
s,U

U (1)

s.t.
∑

a1∈A1

s(a1)u1(a1, a2) ≥ U ∀a2 ∈ A2 (2)

∑
a1∈A1

s(a1) = 1 (3)

s(a1) ≥ 0 ∀a1 ∈ A1 (4)

Computing a Nash equilibrium in zero-sum normal-form games can
be done in polynomial time.


