Assignment 1 (5p). Let \mathcal{X} be a set of input observations and $\mathcal{Y} = \mathcal{A}^n$ a set of sequences of length n defined over a finite alphabet \mathcal{A}. Let $h : \mathcal{X} \to \mathcal{Y}$ be a prediction rule that returns a sequence $h(x) = (h_1(x), \ldots, h_n(x))$ for each $x \in \mathcal{X}$. Assume that we want to measure the prediction accuracy by a loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ defined as

$$\ell((y_1, \ldots, y_n), (y'_1, \ldots, y'_n)) = \min \left\{ 5, \sum_{i=1}^{n} [y_i \neq y'_i] \right\},$$

that is, we penalize the prediction by the Hamming distance but we pay penalty at most 5. The performance of the prediction rule is measured by the expected risk $R(h) = \mathbb{E}_{(x,y_1,\ldots,y_n) \sim p} \ell((y_1, \ldots, y_n), h(x))$ where $p(x, y_1, \ldots, y_n)$ is a p.d.f. defined over $\mathcal{X} \times \mathcal{Y}$. As the distribution $p(x, y_1, \ldots, y_n)$ is unknown, we estimate $R(h)$ by the test error $R_{SL}(h) = \frac{1}{l} \sum_{j=1}^{l} \ell((y_1^j, \ldots, y_n^j), h(x^j))$, where $S^l = \{(x^i, y_1^i, \ldots, y_n^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \ldots, l\}$ is a set of examples drawn from i.i.d. random variables with distribution $p(x, y_1, \ldots, y_n)$.

a) Assume that the sequence length is $n = 10$ and that we compute the test error from $l = 50$ examples. What is the minimal probability that $R(h)$ will be in the interval $(R_{SL}(h) - 1, R_{SL}(h) + 1)$?

b) What is the minimal number l of test examples which we need to collect in order to guarantee that $R(h)$ is in the interval $(R_{SL}(h) - \varepsilon, R_{SL}(h) + \varepsilon)$ with probability γ at least? Write l as a function of ε, n and γ.

Assignment 2 (3p). Consider a random variable $x \in \mathbb{R}$ that follows a distribution $p(x)$ with expectation $\mathbb{E}_{x \sim p(x)}[x] = \mu_0$ and variance $\mathbb{V}_{x \sim p(x)}[x] = \sigma_0^2$. We want to approximate $p(x)$ by a Gaussian distribution

$$q(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(\frac{-(x - \mu)^2}{2\sigma^2} \right).$$

Find the parameters μ, σ of the Gaussian distribution that provides the best approximation of $p(x)$ w.r.t. the Kullback-Leibler divergence

$$D_{KL}(p(x) \parallel q(x)) = \int p(x) \log \frac{p(x)}{q(x)} \, dx.$$
Assignment 3 (5p). Let \(s = (s_1, \ldots, s_n) \) denote sequences of length \(n \) over the finite alphabet \(\mathcal{A} = \{a, b, c, \ldots, z\} \). Let \(p(s) \) be a Markov chain model on them with probability given by

\[
p(s) = p(s_1) \prod_{i=2}^{n} p(s_i | s_{i-s})..
\]

We want to find the most probable sequence \(s \) among all sequences which have the letter “q” in position \(k \). Assume that \(1 < k < n \). Give an algorithm for solving this task. What is its run-time complexity?

Assignment 4 (5p). Define a neural module (layer) joining a linear layer and an ELU (Exponential Linear Unit) layer. Give the forward, backward and parameter messages. Consider \(n \) inputs, \(K \) units of the linear layer and \(K \) units of the ELU layer each processing the output of the corresponding unit of the preceding linear layer. Each ELU unit applies the non-linearity:

\[
f(x) = \begin{cases}
 x, & \text{if } x > 0 \\
 e^x - 1, & \text{if } x \leq 0.
\end{cases}
\]

- The forward message is defined as a function of layer outputs w.r.t. to its inputs.
- The backward message is defined as the set of derivatives of all layer outputs w.r.t. to all layer inputs.
- Finally, the parameter message is defined as the set of derivatives of all layer outputs w.r.t. to all layer parameters.

Assignment 5 (4p). Consider a regression problem with multiple training datasets \(\mathcal{T}^m = \{(x_i, y_i) \mid i = 1, \ldots, m\} \) of size \(m \) generated by using

\[
y = f(x) + \epsilon,
\]

where \(\epsilon \) is noise with \(\mathbb{E}(\epsilon) = 0 \) and \(\text{Var}(\epsilon) = \sigma^2 \). Derive the bias-variance decomposition for the 1-nearest-neighbour regression. The response of the 1-NN regressor is defined as:

\[
h_m(x) = y_{n(x)} = f(x_{n(x)}) + \epsilon,
\]

where \(n(x) \) gives the index of the nearest neighbour of \(x \) in \(\mathcal{T}^m \). For simplicity assume that all \(x_i \) are the same for all training datasets \(\mathcal{T}^m \) in consideration, hence, the randomness arises from the noise \(\epsilon \), only.

Give the squared bias:

\[
\mathbb{E}_x \left[(g_m(x) - f(x))^2 \right] = \mathbb{E}_x \left[\left(\mathbb{E}_{\mathcal{T}^m} (h_m(x)) - f(x) \right)^2 \right]
\]

and variance:

\[
\mathbb{V}_{x,\mathcal{T}^m} (h_m(x)).
\]