STATISTICAL MACHINE LEARNING (WS2021)
 EXAM T2 (90MIN / 22P)

Assignment 1 (5p). Let \mathcal{X} be a set of input observations and $\mathcal{Y}=\mathcal{A}^{n}$ a set of sequences of length n defined over a finite alphabet \mathcal{A}. Let $h: \mathcal{X} \rightarrow \mathcal{Y}$ be a prediction rule that returns a sequence $h(x)=\left(h_{1}(x), \ldots, h_{n}(x)\right)$ for each $x \in \mathcal{X}$. Assume that we want to measure the prediction accuracy by a loss function $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ defined as

$$
\ell\left(\left(y_{1}, \ldots, y_{n}\right),\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)\right)=\min \left\{5, \sum_{i=1}^{n} \llbracket y_{i} \neq y_{i}^{\prime} \rrbracket\right\}
$$

that is, we penalize the prediction by the Hamming distance but we pay penalty at most 5 . The performance of the prediction rule is measured by the expected risk $R(h)=$ $\mathbb{E}_{\left(x, y_{1}, \ldots, y_{n}\right) \sim p} \ell\left(\left(y_{1}, \ldots, y_{n}\right), h(x)\right)$ where $p\left(x, y_{1}, \ldots, y_{n}\right)$ is a p.d.f. defined over $\mathcal{X} \times \mathcal{Y}$. As the distribution $p\left(x, y_{1}, \ldots, y_{n}\right)$ is unknown, we estimate $R(h)$ by the test error

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l} \sum_{j=1}^{l} \ell\left(\left(y_{1}^{j}, \ldots, y_{n}^{j}\right), h\left(x^{j}\right)\right),
$$

where $\mathcal{S}^{l}=\left\{\left(x^{i}, y_{1}^{i}, \ldots, y_{n}^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, l\right\}$ is a set of examples drawn from i.i.d. random variables with distribution $p\left(x, y_{1}, \ldots, y_{n}\right)$.
a) Assume that the sequence length is $n=10$ and that we compute the test error from $l=50$ examples. What is the minimal probability that $R(h)$ will be in the interval $\left(R_{\mathcal{S}^{l}}(h)-1, R_{\mathcal{S}^{l}}(h)+1\right)$?
b) What is the minimal number l of test examples which we need to collect in order to guarantee that $R(h)$ is in the interval $\left(R_{\mathcal{S}^{l}}(h)-\varepsilon, R_{\mathcal{S}^{l}}(h)+\varepsilon\right)$ with probability γ at least? Write l as a function of ε, n and γ.

Assignment 2 (3p). Consider a random variable $x \in \mathbb{R}$ that follows a distribution $p(x)$ with expectation $\mathbb{E}_{x \sim p(x)}[x]=\mu_{0}$ and variance $\mathbb{V}_{x \sim p(x)}[x]=\sigma_{0}^{2}$. We want to approximate $p(x)$ by a Gaussian distribution

$$
q(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

Find the parameters μ, σ of the Gaussian distribution that provides the best approximation of $p(x)$ w.r.t. the Kullback-Leibler divergence

$$
D_{K L}(p(x) \| q(x))=\int_{1} p(x) \log \frac{p(x)}{q(x)} d x
$$

Assignment 3 (5p). Let $s=\left(s_{1}, \ldots, s_{n}\right)$ denote sequences of length n over the finite alphabet $\mathcal{A}=\{a, b, c, \ldots, z\}$. Let $p(s)$ be a Markov chain model on them with probability given by

$$
p(s)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-s}\right)
$$

We want to find the most probable sequence s among all sequences which have the letter "q" in position k. Assume that $1<k<n$. Give an algorithm for solving this task. What is its run-time complexity?
Assignment 4 (5p). Define a neural module (layer) joining a linear layer and an ELU (Exponential Linear Unit) layer. Give the forward, backward and parameter messages. Consider n inputs, K units of the linear layer and K units of the ELU layer each processing the output of the corresponding unit of the preceding linear layer. Each ELU unit applies the non-linearity:

$$
f(x)= \begin{cases}x, & \text { if } x>0 \\ e^{x}-1, & \text { if } x \leq 0\end{cases}
$$

- The forward message is defined as a function of layer outputs w.r.t. to its inputs.
- The backward message is defined as the set of derivatives of all layer outputs w.r.t. to all layer inputs.
- Finally, the parameter message is defined as the set of derivatives of all layer outputs w.r.t. to all layer parameters.
Assignment $5(4 \mathrm{p})$. Consider a regression problem with multiple training datasets $\mathcal{T}^{m}=$ $\left\{\left(x_{i}, y_{i}\right) \mid i=1, \ldots, m\right\}$ of size m generated by using

$$
\begin{equation*}
y=f(x)+\epsilon \tag{1}
\end{equation*}
$$

where ϵ is noise with $\mathbb{E}(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2}$. Derive the bias-variance decomposition for the 1-nearest-neighbour regression. The response of the $1-\mathrm{NN}$ regressor is defined as:

$$
h_{m}(x)=y_{n(x)}=f\left(x_{n(x)}\right)+\epsilon
$$

where $n(x)$ gives the index of the nearest neighbour of x in \mathcal{T}^{m}. For simplicity assume that all x_{i} are the same for all training datasets \mathcal{T}^{m} in consideration, hence, the randomness arises from the noise ϵ, only.

Give the squared bias:

$$
\mathbb{E}_{x}\left[\left(g_{m}(x)-f(x)\right)^{2}\right]=\mathbb{E}_{x}\left[\left(\mathbb{E}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)-f(x)\right)^{2}\right]
$$

and variance:

$$
\mathbb{V}_{x, \mathcal{T}^{m}}\left(h_{m}(x)\right)
$$

