
1/29

IV. STM32 – Exception and Interrupts
BE2M37MAM – Microprocessors

Stanislav V́ıtek

Czech Technical University in Prague



2/29

Part I

Exceptions



3/29

What is an exception?

● A special event that requires the CPU to stop normal program execution and perform
some service related to the event.
● Examples of exceptions include

● I/O completion, timer time-out, end of conversion,
● illegal opcodes, arithmetic overflow, divide-by-0, etc.

● Functions of exceptions
● Respond to infrequent but important events

● Alarm conditions like low battery power
● Error conditions

● I/O synchronization
● Trigger interrupt when signal on a port changes

● Periodic interrupts
● Generated by the timer at a regular rate
● Systick timer can generate interrupt when it hits zero

Reload value + frequency determine interrupt rate



4/29

Polling vs. Interrupt



5/29

Interrupt Properties

● Interrupt maskability
● Interrupts that can be ignored by the CPU are called maskable interrupts.
● A maskable interrupt must be enabled before it can interrupt the CPU.
● An interrupt is enabled by setting an enable bit.
● Interrupts that can’t be ignored by the CPU are called nonmaskable interrupts.

● Exception priority
● Allow multiple pending interrupt requests
● Resolve the order of service for multiple pending interrupts

● Interrupt service routine (ISR)
● An interrupt handler is a callback subroutine in microcontroller firmware whose execution is

triggered by the reception of an interrupt.
Interrupt handlers have a multitude of functions, which vary based
on the reason the interrupt was generated.



6/29

Interrupt vector

● Starting address of the interrupt handler
● Interrupt vector table

● table of interrupt vectors that associates an interrupt handler with an interrupt request

● Methods of determining interrupt vectors
● Predefined locations (Microchip PIC18, 8051 variants)
● Fetching the vector from a predefined memory location (HCS12, STM32)
● Executing an interrupt acknowledge cycle to fetch a vector number in order to locate the

interrupt vector (68000 and x86 families)



7/29

Interrupt Service Cycle

● Saving the program counter value in the stack

● Saving the CPU status (including the CPU status register and some other registers) in
the stack

● Identifying the cause of interrupt

● Resolving the starting address of the corresponding interrupt service routine

● Executing the interrupt service routine

● Restoring the CPU status and the program counter from the stack

● Restarting the interrupted program



8/29

Part II

Cortex M4 Core Peripherals



9/29

Cortex M4 Core Peripherals

System Control Block It provides system implementation information and control. In
particular it supports exception configuration, control, and processing.

Nested Vectored Interrupt Controller It supports low latency interrupt configuration,
control, and processing.

System timer (SysTick) Use this 24-bit count-down timer as a Real Time Operating
System (RTOS) tick timer or as a simple counter.

Memory Protection Unit It improves system reliability by defining the memory attributes for
different memory regions.

Floating-point Unit It provides IEEE754-compliant operations on single- precision, 32-bit,
floating-point values.



10/29

II. Cortex M4 Core Peripherals

System Control Block

SysTick Timer

Nested Vector Interrupt Controller



11/29

System Control Block

● Exception enables.

● Setting or clearing exceptions to/from the pending state.

● Exception status (Inactive, Pending, or Active). Inactive is when an exception is neither
Pending nor Active.

● Priority setting (for configurable system exceptions)

● The exception number of the currently executing code and highest pending exception.



12/29

System Control Block – Registers 1/2

Name Description Operation

ACTLR Auxiliary Control Register disables certain aspects of functionality within the
processor

CPUID CPUID Base Register specifies the ID and version numbers, and the im-
plementation details of the processor core

ICSR Interrupt Control State
Register

Used to: * set a pending Non-Maskable Inter-
rupt(NMI) * set or clear a pending PendSV * set
or clear a pending SysTick * check for pending ex-
ceptions * check the vector number of the highest
priority pended exception * check the vector number
of the active exception

VTOR Vector Table Offset Regis-
ter

indicates the offset of the vector table base address
from memory address 0x0000 0000



13/29

System Control Block – Registers 2/2

Name Description Operation

AIRCR Application Interrupt and
Reset Control Register

provides priority grouping control for the exception
model, endian status for data accesses, and reset
control of the system

SCR System Control Register speccontrols features of entry to and exit from low
power state

CCR Configuration and Control
Register

permanently enables stack alignment and causes un-
aligned accesses to result in a Hard Fault

SHPRx System handler priority reg-
isters

set the priority level of the exception handlers that
have configurable priority



14/29

II. Cortex M4 Core Peripherals

System Control Block

SysTick Timer

Nested Vector Interrupt Controller



15/29

SysTick Timer

● 24-bit system timer, that counts down from the reload value to zero, reloads the value in
the STK LOAD register on the next clock edge, then counts down on subsequent clocks.

● When the processor is halted for debugging the counter does not decrement.

● Systick can be used to generate an exception (#15).

● It can be used as the basic timer for an operating system, as an alarm timer, for timing
measurements, and more.

Address Name Type Description

0xE000E01 STK CTRL RW SysTick control and status register

0xE000E01 STK LOAD RW SysTick reload value register

0xE000E01 STK VAL RW SysTick current value register

0xE000E01 STK CALIB RO SysTick calibration value register

STM32 Cortex-M4 MCUs and MPUs programming manual, page 246



16/29

SysTick Control and Status Register

Bits Name Type Reset value Description

16 COUTFLAG RO 0 Returns 1 if timer counted to 0 since last
time this register was read

2 CLKSOURCE RW 0 Clock source selection
0: AHB/8 (reset value)
1: Processor clock (AHB)

1 TICKINT RW 0 SysTick exception request enable

0 ENABLE RW 0 SysTick timer enable

STM32 Cortex-M4 MCUs and MPUs programming manual, page 247



17/29

How SysTick works?

STL_LOAD

STL_VAL

reload value

counter
set
COUTFLAG

reservedreserved

0

1

012STL_CTRL

CLKSOURCE

ENABLE

TICKINT
COUNFLAG

SysTick
interrupt

AHB/8

AHB



18/29

SysTick Exception Configuration

● The SysTick interrupt is an internal Cortex exception and is handled in the system
registers.

● Some of the internal exceptions are permanently enabled; these include the reset and
NMI interrupts, but also the SysTick timer, so there is no explicit action required to
enable the SysTick interrupt within the NVIC.

● To configure the SysTick interrupt we need to set the timer going and enable the
interrupt within the peripheral itself:

1 STK_CTRL |= 0; // reset register, clock source in AHB/8

2 STK_VAL |= 0; // initial value

3 STL_LOAD |= 2000000; // reload value

4 STL_CTRL |= 0x02; // enable exception

5 STL_CRTL |= 0x01; // enable Systick



19/29

SysTick Interrupt Handler

● To handle SysTick interrupt one can create interrupt service routine (ISR) by declaring
function with the same address as an address on declared on 15th position of Interupt
Vector Table

1 unsigned long *vtable[] __attribute__((section(".isr_vector"))) = {

2 (unsigned long *)SRAM_END, // 0 initial stack pointer

3 (unsigned long *)main, // 1 main as Reset Handler

4 ...

5 (unsigned long *)systick_handler // 15 Systick

6 };

8 void systick_handler(void) {

9 // code to be executed

10 }

11



20/29

II. Cortex M4 Core Peripherals

System Control Block

SysTick Timer

Nested Vector Interrupt Controller



21/29

NVIC features

● Up to 240 interrupts (STM32F4 – 52 maskable interrupt channels)
Not including the 16 interrupt lines of Cortex-M4 with FPU

● 16 programmable priority levels (0-15, 4 bits)
● A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority
● Dynamic reprioritization of interrupts
● Grouping of priority values into group priority and subpriority fields

● Level and pulse detection of interrupt signals

● Low-latency exception and interrupt handling

● Power management control

● Implementation of system control registers

● An external Non-maskable interrupt (NMI)



22/29

NVIC in the Cortex-M4 core



23/29

Interrupt and exception vectors

no pos pr decription associated periph.

16 0 7 Window Watchdog interrupt WWDG

17 1 8 PVD through EXTI line detection interrupt EXTI16/PVD

18 2 9 Tamper and TimeStamp interrupts through the
EXTI line

EXTI21/TAMP STAMP

19 3 10 RTC Wakeup interrupt through the EXTI line EXTI22/RTC WKUP

20 4 11 Flash global interrupt FLASH

21 5 12 RCC global interrupt RCC

22 6 13 EXTI Line0 interrupt EXTI0

23 7 14 EXTI Line1 interrupt EXTI1

STM32F401xD/E advanced ARM-based 32-bit MCUs, reference manual, page 202



24/29

Interupt Latency

● The NVIC is designed for fast and efficient interrupt handling
● on a Cortex-M4 you will reach the first line of C code in your interrupt routine after 12

cycles for a zero wait state memory system.

● This interrupt latency is fully deterministic
● from any point in the background (non-interrupt) code you will enter the interrupt with the

same latency.

● Multi-cycle instructions can be halted with no overhead and then resumed once the
interrupt has finished.



25/29

Exception States

● Inactive:
● The exception is not active and not pending.

● Pending:
● The exception is waiting to be serviced by the processor.
● An interrupt request from a peripheral or from software can change the state of the

corresponding interrupt to pending.

● Active:
● An exception that is being serviced by the processor but has not completed.
● An exception handler can interrupt the execution of another exception handler. In this case

both exceptions are in the active state.

● Active and pending
● The exception is being serviced by the processor and there is a pending exception from the

same source.



26/29

NVIC registers

address name decription

0xE000E100 – 0xE000E11F NVIC ISER0 – NVIC ISER7 Int. set-enable registers, p. 210

0XE000E180 – 0xE000E19F NVIC ICER0 – NVIC ICER7 Int. clear-enable registers, p.211

0XE000E200 – 0xE000E21F NVIC ISPR0- NVIC ISPR7 Int. set pending registers, p. 212

0XE000E280 – 0xE000E29F NVIC ICPR0- NVIC ICPR7 Int. clear-pending registers, p. 213

0xE000E300 – 0xE000E31F NVIC IABR0-NVIC IABR7 Int. active bit register, p. 214

0xE000E400 – 0xE000E4EF NVIC IPR0- NVIC IPR59 Int. priority registers, p. 215

0xE000EF0 STIR Software trigger int. register, p. 216

Write to the STIR to generate a Software Generated Interrupt (SGI). The value to be written is the Interrupt
ID of the required SGI, in the range 0-239. For example, a value of 3 specifies interrupt IRQ3.

STM32 Cortex-M4 MCUs and MPUs programming manual, page 208


	Exceptions
	Cortex M4 Core Peripherals
	System Control Block
	SysTick Timer
	Nested Vector Interrupt Controller

	External Interrupts
	Handling External Interrupts


