2. ARM intro. Cortex M4 Registers. STM32 Memory layout.
BE2M37MAM — Microprocessors

Stanislav Vitek

Czech Technical University in Prague



Introduction to ARM Based Processors

* An ARM architecture is a set of specifications

® instruction set, execution model, memory
organization and layout, instruction cycles, . ...

An ARM processor
® developed using one of the ARM architecture

ARM Cortex-A family
® Applications processors
® Support OS and high-performance applications
® Such as Smartphones, Smart TV

* ARM Cortex-R family
® Real-time processors with high performance
and high reliability
® RT processing and mission-critical control

* ARM Cortex-M family

® Microcontroller, cost-sensitive, support SoC

Cortex-R

Cortex-M

SecurCore

Classic

[ J
[ J
L]
[ J
L
L]
[ |
O
O
O
O
O
O
O
O
O
O
O
OJ
O
[




Cortex-M4 Block Diagram

1/2

ARM Cortex-M4 Microprocessor

-

Optional
wic

-

= >

Optional FPU
Nested Vector Ootional
Interupt [/~ N
Controller [NV Processor core N—V/ Trace Macrocell
(NVIC)
Optional )
Debug Optional Memory Opt_lonal_ Serial ::
e e protection unit Wire Viewer
Optional Optional
Flash Data
patch watchpoints
Bus matrix
Code interface Slend

ﬁ

peripheral interface

A

;
RS



Cortex-M4 Block Diagram 1/2

® Processor core

® Contains internal registers, the ALU, data path, and some control logic
® Registers include sixteen 32-bit registers for both general and special usage
® Processor pipeline stages
® Three-stage pipeline: fetch, decode, and execution
® Some instructions may take multiple cycles to execute, in which case the pipeline will be
stalled
® The pipeline will be flushed if a branch instruction is executed
* Up to two instructions can be fetched in one transfer (16-bit instructions)

Instruction 1 [ Fetch ][ Decode ][ Execute |

Instruction 2 [ Decode ][ Execute ]
Instruction 3 ([ Decode ][ Execute |
Instruction 4 [ Decode ][ Execute ]

.
>

Time



Cortex-M4 Block Diagram 3/4

* Nested Vectored Interrupt Controller (NVIC)
® Up to 240 interrupt request signals and a non-maskable interrupt (NMI)
¢ Automatically handles nested interrupts, such as comparing priorities between interrupt
requests and the current priority level
* Wakeup Interrupt Controller (WIC)
® For low-power applications, the microcontroller can enter sleep mode by shutting down most
of the components.
® When an interrupt request is detected, the WIC can inform the power management unit to
power up the system.
* Memory Protection Unit (optional)

® Used to protect memory content, e.g. make some memory regions read-only or preventing
user applications from accessing privileged application data



Cortex-M4 Block Diagram 4/4

® Bus interconnect

® Allows data transfer to take place on different buses simultaneously

® Provides data transfer management, e.g. a write buffer, bitoriented operations (bit-band)

® May include bus bridges (e.g. AHB-to-APB bus bridge) to connect different buses into a
network using a single global memory space

® Includes the internal bus system, the data path in the processor core, and the AHB LITE
interface unit

¢ Debug subsystem

® Handles debug control, program breakpoints, and data watchpoints
®* When a debug event occurs, it can put the processor core in a halted state, where developers
can analyse the status of the processor at that point, such as register values and flags



Cortex-M4 Registers

® Processor registers

® The internal registers are used to store and process temporary data within the processor core
® All registers are inside the processor core, hence they can be accessed quickly
® Load-store architecture
® To process memory data, they have to be first loaded from memory to registers, processed
inside the processor core using register data only, and then written back to memory if needed
* Cortex-M4 registers

® Register bank
® Sixteen 32-bit registers (thirteen are used for general-purpose);
® Special registers



Cortex-M4 Registers

Register bank g

RO

Ri

R2

R3

Low

R<

Registers

RS

General purpose |
star

RE

R7

Ra

R2

Ri0

b rign

Registers

R11

“

Ri2

~ MSP

Stack Pointar (SP)

R13{banked)

— Main Stack Peinter

Link Reglster (LR)

Ri4

Program Counter {PC)

Ri5

Process Stack Poiner

Special registers  crogram state Registers (PSR)|

x PSR

—=—= [ AFSR | EFSR [ PSR |

PRIMASK

Applicaion  Ewscution  Intemupt

PSR PSR PSR

Intemupt mask regisier [

FAULTMASK

BASEPRI

Stack defnition |

CONTROL




Cortex-M4 Registers

® RO — R12: general purpose registers

® Low registers (RO — R7) can be accessed by any
instruction PUA ﬂOP

* High registers (R8 — R12) sometimes cannot be Low
accessed e.g. by some Thumb (16-bit) instructions

* R13: Stack Pointer (SP) Stack | | Address

® Records the current address of the stack SP

® Used for saving the context of a program while Figh
switching between tasks Heap

® Cortex-M4 has two SPs: Main SP, used in
applications that require privileged access e.g. OS
kernel, and exception handlers, and Process SP,
used in base-level application code (when not Code
running an exception handler)




Cortex-M4 Registers

* Program Counter (PC) —
® Records the address of the current instruction code 1 save e 1 L
* Automatically incremented by 4 at each operation e | 3
(for 32-bit instruction code), except branching s i
operations mestaring :
® A branching operation, such as function calls, will subroutine bt
change the PC to a specific address, meanwhile it
saves the current PC to the Link Register (LR) Calla subroutine
® R14: Link Register (LR) o e?
® The LR is used to store the return address of a S P:fd"' .
subroutine or a function call sdéress n LR :
® The program counter (PC) will load the value from program §
LR after a function is finished Currant p| Subrautine
............. ol

Return from a subroutine to the main program



Cortex-M4 Registers

® xPSR, combined Program Status Register
® Provides information about program execution and ALU flags

* Application PSR (APSR)
® Interrupt PSR (IPSR)

® ISR number — current executing interrupt service routine number
® Execution PSR (EPSR)
* Application PSR (APSR)

N: negative flag — set to one if the result from ALU is negative

Z: zero flag — set to one if the result from ALU is zero

C: carry flag — set to one if an unsigned overflow occurs

V: overflow flag — set to one if a signed overflow occurs

® Q: sticky saturation flag — set to one if saturation has occurred in saturating arithmetic
instructions, or overflow has occurred in certain multiply instructions



STM32 memory layout

0xA0000000

O0x9FFFFFFF

0x60000000
Ox5FFFFFFF

0x40000000
Ox3FFFFFFF

0x20000000
Ox1FFFFFFF

0x00000000

External RAM

SRAM

Peripheral 0568

1GB

0.5GB

Code Area

0.5GB

Option bytes

System memory
(boot loaders)

Reserved

Flash

Reserved

Aliased to Flash, System
memory or SRAM depending
on BOOT configuration

O0x1FFFFFFF
0x1FFFX000

0x1FFFX000

0x080X0000

0x08000000

0x00000000



