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Introduction to ARM Based Processors

* An ARM architecture is a set of specifications

® instruction set, execution model, memory
organization and layout, instruction cycles, . ...

An ARM processor
® developed using one of the ARM architecture

ARM Cortex-A family
® Applications processors
® Support OS and high-performance applications
® Such as Smartphones, Smart TV

* ARM Cortex-R family
® Real-time processors with high performance
and high reliability
® RT processing and mission-critical control

* ARM Cortex-M family

® Microcontroller, cost-sensitive, support SoC
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Cortex-M4 Block Diagram
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Cortex-M4 Block Diagram 1/2

® Processor core

® Contains internal registers, the ALU, data path, and some control logic
® Registers include sixteen 32-bit registers for both general and special usage
® Processor pipeline stages
® Three-stage pipeline: fetch, decode, and execution
® Some instructions may take multiple cycles to execute, in which case the pipeline will be
stalled
® The pipeline will be flushed if a branch instruction is executed
* Up to two instructions can be fetched in one transfer (16-bit instructions)

Instruction 1 [ Fetch ][ Decode ][ Execute |

Instruction 2 [ Decode ][ Execute ]
Instruction 3 ([ Decode ][ Execute |
Instruction 4 [ Decode ][ Execute ]
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Cortex-M4 Block Diagram 3/4

* Nested Vectored Interrupt Controller (NVIC)
® Up to 240 interrupt request signals and a non-maskable interrupt (NMI)
¢ Automatically handles nested interrupts, such as comparing priorities between interrupt
requests and the current priority level
* Wakeup Interrupt Controller (WIC)
® For low-power applications, the microcontroller can enter sleep mode by shutting down most
of the components.
® When an interrupt request is detected, the WIC can inform the power management unit to
power up the system.
* Memory Protection Unit (optional)

® Used to protect memory content, e.g. make some memory regions read-only or preventing
user applications from accessing privileged application data



Cortex-M4 Block Diagram 4/4

® Bus interconnect

® Allows data transfer to take place on different buses simultaneously

® Provides data transfer management, e.g. a write buffer, bitoriented operations (bit-band)

® May include bus bridges (e.g. AHB-to-APB bus bridge) to connect different buses into a
network using a single global memory space

® Includes the internal bus system, the data path in the processor core, and the AHB LITE
interface unit

¢ Debug subsystem

® Handles debug control, program breakpoints, and data watchpoints
®* When a debug event occurs, it can put the processor core in a halted state, where developers
can analyse the status of the processor at that point, such as register values and flags



Cortex-M4 Registers

® Processor registers

® The internal registers are used to store and process temporary data within the processor core
® All registers are inside the processor core, hence they can be accessed quickly
® Load-store architecture
® To process memory data, they have to be first loaded from memory to registers, processed
inside the processor core using register data only, and then written back to memory if needed
* Cortex-M4 registers

® Register bank
® Sixteen 32-bit registers (thirteen are used for general-purpose);
® Special registers



Cortex-M4 Registers
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Cortex-M4 Registers

® RO — R12: general purpose registers

® Low registers (RO — R7) can be accessed by any
instruction PUA ﬂOP

* High registers (R8 — R12) sometimes cannot be Low
accessed e.g. by some Thumb (16-bit) instructions

* R13: Stack Pointer (SP) Stack | | Address

® Records the current address of the stack SP

® Used for saving the context of a program while Figh
switching between tasks Heap

® Cortex-M4 has two SPs: Main SP, used in
applications that require privileged access e.g. OS
kernel, and exception handlers, and Process SP,
used in base-level application code (when not Code
running an exception handler)




Cortex-M4 Registers

* Program Counter (PC) —
® Records the address of the current instruction code 1 save e 1 L
* Automatically incremented by 4 at each operation e | 3
(for 32-bit instruction code), except branching s i
operations mestaring :
® A branching operation, such as function calls, will subroutine bt
change the PC to a specific address, meanwhile it
saves the current PC to the Link Register (LR) Calla subroutine
® R14: Link Register (LR) o e?
® The LR is used to store the return address of a S P:fd"' .
subroutine or a function call sdéress n LR :
® The program counter (PC) will load the value from program §
LR after a function is finished Currant p| Subrautine
............. ol

Return from a subroutine to the main program



Cortex-M4 Registers

® xPSR, combined Program Status Register
® Provides information about program execution and ALU flags

* Application PSR (APSR)
® Interrupt PSR (IPSR)

® ISR number — current executing interrupt service routine number
® Execution PSR (EPSR)
* Application PSR (APSR)

N: negative flag — set to one if the result from ALU is negative

Z: zero flag — set to one if the result from ALU is zero

C: carry flag — set to one if an unsigned overflow occurs

V: overflow flag — set to one if a signed overflow occurs

® Q: sticky saturation flag — set to one if saturation has occurred in saturating arithmetic
instructions, or overflow has occurred in certain multiply instructions



STM32 memory layout
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