# 2. ARM intro. Cortex M4 Registers. STM32 Memory layout. BE2M37MAM – Microprocessors

Stanislav Vítek

Czech Technical University in Prague

#### Introduction to ARM Based Processors

- An ARM architecture is a set of specifications
  - instruction set, execution model, memory organization and layout, instruction cycles, . . . .
- An ARM processor
  - developed using one of the ARM architecture
- ARM Cortex-A family
  - Applications processors
  - Support OS and high-performance applications
  - Such as Smartphones, Smart TV
- ARM Cortex-R family
  - Real-time processors with high performance and high reliability
  - RT processing and mission-critical control
- ARM Cortex-M family
  - Microcontroller, cost-sensitive, support SoC





# Cortex-M4 Block Diagram

- Processor core
  - Contains internal registers, the ALU, data path, and some control logic
  - Registers include sixteen 32-bit registers for both general and special usage
- Processor pipeline stages
  - Three-stage pipeline: fetch, decode, and execution
  - Some instructions may take multiple cycles to execute, in which case the pipeline will be stalled
  - The pipeline will be flushed if a branch instruction is executed
  - Up to two instructions can be fetched in one transfer (16-bit instructions)



- Nested Vectored Interrupt Controller (NVIC)
  - Up to 240 interrupt request signals and a non-maskable interrupt (NMI)
  - Automatically handles nested interrupts, such as comparing priorities between interrupt requests and the current priority level
- Wakeup Interrupt Controller (WIC)
  - For low-power applications, the microcontroller can enter sleep mode by shutting down most of the components.
  - When an interrupt request is detected, the WIC can inform the power management unit to power up the system.
- Memory Protection Unit (optional)
  - Used to protect memory content, e.g. make some memory regions read-only or preventing user applications from accessing privileged application data

- Bus interconnect.
  - Allows data transfer to take place on different buses simultaneously
  - Provides data transfer management, e.g. a write buffer, bitoriented operations (bit-band)
  - May include bus bridges (e.g. AHB-to-APB bus bridge) to connect different buses into a network using a single global memory space
  - Includes the internal bus system, the data path in the processor core, and the AHB LITE interface unit
- Debug subsystem
  - Handles debug control, program breakpoints, and data watchpoints
  - When a debug event occurs, it can put the processor core in a halted state, where developers
    can analyse the status of the processor at that point, such as register values and flags

- Processor registers
  - The internal registers are used to store and process temporary data within the processor core
  - All registers are inside the processor core, hence they can be accessed quickly
  - Load-store architecture
  - To process memory data, they have to be first loaded from memory to registers, processed inside the processor core using register data only, and then written back to memory if needed
- Cortex-M4 registers
  - Register bank
  - Sixteen 32-bit registers (thirteen are used for general-purpose);
  - Special registers



- R0 R12: general purpose registers
  - Low registers (R0 R7) can be accessed by any instruction
  - High registers (R8 R12) sometimes cannot be accessed e.g. by some Thumb (16-bit) instructions
- R13: Stack Pointer (SP)
  - Records the current address of the stack
  - Used for saving the context of a program while switching between tasks
  - Cortex-M4 has two SPs: Main SP, used in applications that require privileged access e.g. OS kernel, and exception handlers, and Process SP, used in base-level application code (when not running an exception handler)



- Program Counter (PC)
  - Records the address of the current instruction code
  - Automatically incremented by 4 at each operation (for 32-bit instruction code), except branching operations
  - A branching operation, such as function calls, will change the PC to a specific address, meanwhile it saves the current PC to the Link Register (LR)
- R14: Link Register (LR)
  - The LR is used to store the return address of a subroutine or a function call
  - The program counter (PC) will load the value from LR after a function is finished







Return from a subroutine to the main program

- xPSR, combined Program Status Register
  - Provides information about program execution and ALU flags
  - Application PSR (APSR)
  - Interrupt PSR (IPSR)
    - ISR number current executing interrupt service routine number
  - Execution PSR (EPSR)
- Application PSR (APSR)
  - N: negative flag set to one if the result from ALU is negative
  - Z: zero flag set to one if the result from ALU is zero
  - C: carry flag set to one if an unsigned overflow occurs
  - V: overflow flag set to one if a signed overflow occurs
  - Q: sticky saturation flag set to one if saturation has occurred in saturating arithmetic instructions, or overflow has occurred in certain multiply instructions

# STM32 memory layout

