Temporal Logics

Radek Matik

Czech Technical University
Faculty of Electrical Engineering
Department of Telecommunication Engineering
Prague CZ

November 23, 2020

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics

November 23, 2020

© UPPAAL Tool
@ Modeling and Verification Procedure
© Fundamentals of Temporal Logics
@ Processing Paths and Time
o CTL* Logic
o CTL Logic
o LTL Logic
© UPPAAL
@ Requirements Specification in UPPAAL
@ Model Language
@ Model Verification Properties
@ Time in UPPAAL
@ Urgent Transitions UPPAAL
@ UPPAAL Examples
@ Trains Crossing a Bridge
@ Game NIM

@ Game Requirements Specification NIM

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

UPPAAL Tool Modeling and Verification Procedure

Outline

© UPPAAL Tool
@ Modeling and Verification Procedure

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 3/67

UPPAAL Tool Modeling and Verification Procedure

[UPPOY]

Automaton Creation

T I - =

File Edit View Tools Options Help

Rab aaaf@-e
Editor | Simulator | verifier
Drag out Name: Template Parameters:

‘@ Dedarations I
5 -

“.- @ System dedarations start end

e Starting position (double circle)

@ "Add Location” to add a position

@ "Selection Tool” for naming the position

@ "Add Edge" to add an edge, bend the edges with the mouse around

the ends
@ the lower table " Position” and " Description” for error analysis

4/67

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

UPPAAL Tool Modeling and Verification Procedure

[UPP09]

System Composition

e System ...a network of parallel timed automata (processes).

@ Process ...an instance of a parameterized pattern.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

UPPAAL Tool Modeling and Verification Procedure

[UPPOY]

System Composition

e System ...a network of parallel timed automata (processes).

@ Process ...an instance of a parameterized pattern.

Process

o Position . ..

o name,
e invariants

o Edges ...
e guard conditions (z >=7),
e synchronization (go[id]?),
e assignment (z = 0),

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

UPPAAL Tool Modeling and Verification Procedure

) Template Description "

[Dragout Name: [User Parameters: |bool Sactvated, urgent chan Spushed

: Parameterized timed
5 Door idle pushed!
i EE hed! | automaton
@ name,

I ® System deceratons

activated

@ parameters,

s ¢ raametes: corsti tpa_ ||

Project
Dedlarations

R
Yo oo

System decarations

lock x; &

const int k = 2;

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics

November 23, 2020

UPPAAL Tool Modeling and Verification Procedure

[UPP09]

(Automaton) Template Description

— rag out Name: [user Parameters: |bool sactvated, urgent chan &DushedA P aram et e r| ze d t| me d
die pushed
B | automaton
I # System dedarations ‘E @ hame i
' = : @ parameters,
v
) Local declarations
Name: [P Parameters: |constid_tpid ||!
Project ook x; b 1
L pres @ variables,
R Boedarations: - -
» Syt s @ synchronization channels,
@ constants)

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 6/67

UPPAAL Tool Modeling and Verification Procedure

[UPP09]

System Description

#5, C:/Nolnstalluppaal-4.0.12/demo/ rain-gatexm] - UPPAAL

File Edit View Tools Options Help
DalEaea{@ e

: -
Project * For more details about this example, see i
o EEEEE “ "Automatic Verification of Resl-Time Communicating Spstems by Conmsiraint Solving”,
=B ran * by Wang ¥i, Paul Petterssom and Mats Danisls. In of the Tth Int
| e Dedarations
5% ke * Confsrence on Formal Description Techmigues, pages 223-238, North-Holland. 199d.
" ® Decaratins o

' # System dedarations
const int W= 6 S/ # trains
eypedef int[0,B-1] id_t;

lchan appe[¥], stop[N], leave[N];
wcgent chan go[N];

El ——— »

Pasition Description

Global Declarations

o global integer variables,
@ global clock,
@ synchronization channels,

@ constants

Radek Ma¥ik (radek.marik@fel

Temporal Logics November 23, 2020 7/67

UPPAAL Tool Modeling and Verification Procedure

[UPPO9]

System Definitions

:Lool activatedl, activatedZ;
urgent chan pushedl, pushedZ;

urgent chan closedl, closedZ;

Doorl = Door [activatedl, pushedl, closedl, closedZ);
Doord = Door [activatedZ, pushedZ, closedZ, closedl);
Userl = User [activatedl, pushedl);
Useri = User [activatedZ, pushedZ);

system Doorl, Doord, Userl, UserZ;

Process Assignment

@ a process instance declaration,

@ patterns with fully/partially specified parameters,

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 8/67

UPPAAL Tool Modeling and Verification Procedure

[UPPO9]

System Definitions

:Lool activatedl, activatedZ;
urgent chan pushedl, pushedZ;

urgent chan closedl, closedZ;

Doorl = Door [activatedl, pushedl, closedl, closedZ);
Doord = Door [activatedZ, pushedZ, closedZ, closedl);
Userl = User [activatedl, pushedl);
Useri = User [activatedZ, pushedZ);

system Doorl, Doord, Userl, UserZ;

Process Assignment

@ a process instance declaration,

@ patterns with fully/partially specified parameters,

System Definition

@ a list of system processes,

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 8/67

Fundamentals of Temporal Logics Processing Paths and Time

Outline

© Fundamentals of Temporal Logics
@ Processing Paths and Time

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics Processing Paths and Time

Transitions between Configurations in Kripke's
structure

[Voj10]

unlock(l) lock(l) lock(l) unlock(l) , s

mutex [;

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics Processing Paths and Time

Path in Kripke's structure

[Voj10]

o Path 7 ...in Kripke's structure M is an infinite sequence of states
T = 808183 ... such that, Vi € N..R(s;, Si+1)-

o II(M,s) ...a set of all paths in M that startinvse S

o Suffix 7 of the path ™ = s0s153...5;5;115;12 is a the path
' = $1S;4+18i42 starting in s;.

® s; = mli]

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics Processing Paths and Time

[Voj10]

Concept of Time

Time Abstraction

o Logical time ...works with (partial) ordering of states/events in
system behavior.

@ Physical time ... measurement of time elapsed between two
states/events.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 12 /67

Fundamentals of Temporal Logics Processing Paths and Time

[Voj10]

Concept of Time

Time Abstraction

o Logical time ...works with (partial) ordering of states/events in
system behavior.

@ Physical time ... measurement of time elapsed between two
states/events.

Time in Model Verification

o Linear time ... allows you to express only about a given linear path
in state space.
e On all paths, z must be followed by y.
e On all paths, must be followed by ¥ or z.

e Branching time . .. allows to quantify (existentially and universally)
possible futures starting with a given state. The state space is
observed as an expanded infinite tree.

@ There is a path where the following next state is x.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 12 /67

Fundamentals of Temporal Logics CTL* Logic

Outline

© Fundamentals of Temporal Logics

o CTL* Logic

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 13 /67

Fundamentals of Temporal Logics CTL* Logic

[Voj10]

Computation Tree

Describes the properties of the processing progre

e D (1) (o)
D - Cunlockea()) unlockedl())
st (osP1) (os(P2)) (osP1)) (es(P2))

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 14 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Formula M

@ atomic statements
@ logical connectors
@ path quantifiers

@ temporal operators

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics

November 23, 2020 15 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Quantifiers and Operators [Wik10, Voji0]

Path Quantifiers
describe the branching structure of a computation tree

@ FE ... there exists a processing path from the given state.

@ A ...for all processing paths from the given state.

——F b — — S S — — — —
Qo

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 16 / 67

Fundamentals of Temporal Logics CTL* Logic

CTL* Quantifiers and Operators [Wik10, Voji0]

Path Quantifiers

describe the branching structure of a computation tree

@ F ...there exists a processing path from the given state.

@ A ...for all processing paths from the given state.

Temporal Operators

determine the properties of a given path in the computation tree

@ X (next time,). ..the property ¢ is fulfilled in the second (next)
state of the path.

P — g — — — S D — — — — F
Qo

e Fp (in future, O)...the property ¢ is valid in a state of the path.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 16 / 67

Fundamentals of Temporal Logics CTL* Logic

CTL* Operators " ¥

Temporal Operators

o Gy (globally, O)... The property ¢ is satisfied in all states of the given
path.

e — — e ———— 5 e — — — — ¥
@ T 0 @ o
o Uy (until). .. The property ¢ is valid in some path state, and the
property % is valid at least in all previous states of this path.

@ YRy (release). .. The property ¢ must be valid until (and including) the
state when the v property becomes satisfied, if such a state exists.

.—,n.———-;u.—?.————;
o o il o, W
——— i — — — S ————— — — — —

iy o 0 @ @

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 17 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Syntax "

Let AP be a nonempty set of atomic propositions.

Syntax of state formulas that are true in a given state

o If p € AP, then p is a state formula.
o If ¢ a v are state formulae, then =, ¢ V ¢, ¢ A1 are state fomulae.

@ If ¢ is a path formula, potom E¢ a Ay are state formulae.

CTL* is the set of state formulae generated by the above rules.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 18 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Syntax "

Let AP be a nonempty set of atomic propositions.

Syntax of state formulas that are true in a given state

o If p € AP, then p is a state formula.
o If ¢ a v are state formulae, then =, ¢ V ¢, ¢ A1 are state fomulae.

@ If ¢ is a path formula, potom E¢ a Ay are state formulae.

Syntax of path formulae that are true in states along a specific path

o If ¢ is a state formula, then ¢ is also a path formula.

o If v and v are path formulae, then =, o V¢, o A, X, Fp, Gp,
wU1 a pR are path formulae.

CTL* is the set of state formulae generated by the above rules.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 18 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 19 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

November 23, 2020 19 /67

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

@ For the path formula ¢ over AP, we denote M, 7 |= ¢ the fact,
that ¢ is satisfied along the path 7 in M.

November 23, 2020 19 /67

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

@ For the path formula ¢ over AP, we denote M, 7 |= ¢ the fact,
that ¢ is satisfied along the path 7 in M.

o Let s € .S, m be a path in M, ¢1, @2 are state formulae over AP,

p € AP, and 11, 9 are path formulae over AP.
Then, we define a relation |= inductively as follows:

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 19 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

@ For the path formula ¢ over AP, we denote M, 7 |= ¢ the fact,
that ¢ is satisfied along the path 7 in M.

o Let s € .S, m be a path in M, ¢1, @2 are state formulae over AP,

p € AP, and 11, 9 are path formulae over AP.
Then, we define a relation |= inductively as follows:

e M,s =p iff pe L(s).

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 19 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

@ For the path formula ¢ over AP, we denote M, 7 |= ¢ the fact,
that ¢ is satisfied along the path 7 in M.

o Let s € .S, m be a path in M, ¢1, @2 are state formulae over AP,
p € AP, and 11, 19 are path formulae over AP.
Then, we define a relation |= inductively as follows:
e M,s =p iff pe L(s).
o M,s =~y iff M, s [~ .

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 19 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

@ For the path formula ¢ over AP, we denote M, 7 |= ¢ the fact,
that ¢ is satisfied along the path 7 in M.

o Let s € .S, m be a path in M, ¢1, @2 are state formulae over AP,
p € AP, and 11, 19 are path formulae over AP.
Then, we define a relation |= inductively as follows:
e M,s =p iff pe L(s).
o M,s =~y iff M,s g,
o M,s =1V iff M,s =1 or M, s = ¢a.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 19 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

@ For the path formula ¢ over AP, we denote M, 7 |= ¢ the fact,
that ¢ is satisfied along the path 7 in M.

o Let s € .S, m be a path in M, ¢1, @2 are state formulae over AP,
p € AP, and 11, 19 are path formulae over AP.
Then, we define a relation |= inductively as follows:
e M,s =p iff pe L(s).
M, s =~y iff M,s i 1.
M,s = @1 Ve iff M,s = o1 or M, s = ¢s.
M, s = o1 A2 iff M,s =1 and M, s | ¢a.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

@ For the path formula ¢ over AP, we denote M, 7 |= ¢ the fact,
that ¢ is satisfied along the path 7 in M.

o Let s € .S, m be a path in M, ¢1, @2 are state formulae over AP,
p € AP, and 11, 19 are path formulae over AP.
Then, we define a relation |= inductively as follows:
e M,s =p iff pe L(s).
M, s =~y iff M,s i 1.
M,s = @1 Ve iff M,s = o1 or M, s = ¢s.
M, s = o1 A2 iff M,s =1 and M, s | ¢a.
M,s &= Evy iff Ir €e II(M,). M, s = 1.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Semantics Y™

o Let be Kripke's structure M = (S,7T,Z, so, L)
over a set of atomic propositions AP.

@ For the state formula ¢ over AP, we denote M, s |= ¢ the fact,
that ¢ is satisfied in s € S.

@ For the path formula ¢ over AP, we denote M, 7 |= ¢ the fact,
that ¢ is satisfied along the path 7 in M.

o Let s € .S, m be a path in M, ¢1, @2 are state formulae over AP,
p € AP, and 11, 19 are path formulae over AP.
Then, we define a relation |= inductively as follows:
e M,s =p iff pe L(s).
M, s =~y iff M,s i 1.
M,s = @1 Ve iff M,s = o1 or M, s = ¢s.
M, s = o1 A2 iff M,s =1 and M, s | ¢a.
M,s &= Evy iff Ir €e II(M,). M, s = 1.
M,S ': A’l,bl iff Vor € H(M,S).M,S ': 1,[)1.

Radek Mafik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:
o M,m |= 1 iff M,so = 1,50 = 7[0].

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 20 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:
o M,m |= 1 iff M,so = 1,50 = 7[0].
° M,Tl' |:_|’l/11 IfFM,ﬂ'l;é’(/Jl

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:
o M,m |= 1 iff M,so = 1,50 = 7[0].
° M,Tl' |:_|’l/11 IfFM,ﬂ'l;é’(/Jl
] M,Tl' |=1/J1V’l/)2 Iﬂ:M,T('):wl or M,ﬂ'):’lﬁg.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:

M, |= 1 iff M, so = ¢1,50 = 7[0].

M,Tl' |:_|’l/11 IfFM,ﬂ'l;é’(/Jl

M, = apy V apy iff M, = by or M, 7 = 1hs.
M,Tl' I: ’lpl /\’(/)2 Iﬂ:M,ﬂ')=¢1 and M,ﬂ' ’:wQ

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:

M, |= 1 iff M, so = ¢1,50 = 7[0].

M,Tl' |:_|’l/11 IfFM,ﬂ'l;é’(/Jl

M, = apy V apy iff M, = by or M, 7 = 1hs.
M,Tl' I: ’lpl /\’(/)2 Iﬂ:M,ﬂ')=¢1 and M,ﬂ' ’:wQ
M, = Xy iff M, 7! = .

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:

M, |= 1 iff M, so = ¢1,50 = 7[0].

M,Tl' |:_|’l/11 IfFM,ﬂ'l;é’(/Jl

M, = apy V apy iff M, = by or M, 7 = 1hs.
M,Tl' I: ’lpl /\’(/)2 Iﬂ:M,ﬂ')=¢1 and M,ﬂ' ’:wQ
M, = Xy iff M, 7! = .

M, m = Fapy iff 3i > 0.M, 7 = .

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:

M, |= 1 iff M, so = ¢1,50 = 7[0].

M,Tl' |:_|’l/11 IfFM,ﬂ'l;é’(/Jl

M, = apy V apy iff M, = by or M, 7 = 1hs.
M,Tl' I: ’lpl /\’(/)2 Iﬂ:M,ﬂ')=¢1 and M,ﬂ' ’:wQ
M, = Xy iff M, 7! = .

M, m = Fapy iff 3i > 0.M, 7 = .

M, = Gy iff Vi > 0.M, 7 |= 1),.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:

M, |= 1 iff M, so = ¢1,50 = 7[0].

M,Tl' |:_|’l/11 IfFM,ﬂ'l;é’(/Jl

M, = apy V apy iff M, = by or M, 7 = 1hs.
M,Tl' I: ’lpl /\’(/)2 Iﬂ:M,ﬂ')=¢1 and M,ﬂ' ’:wQ
M, = Xy iff M, 7! = .

M, m = Fapy iff 3i > 0.M, 7 = .

M, = Gy iff Vi > 0.M, 7 |= 1),.

M, m = Uspy iff 3i > 0.M, 7 = oy

and V0 < j < i.M, 7l = 1.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Path Semantics V"

@ To continue defining the relation =:

M, |= 1 iff M, so = ¢1,50 = 7[0].

M,Tl' |:_|’l/11 IfFM,ﬂ'I#’(/Jl

M, = apy V apy iff M, = by or M, 7 = 1hs.
M,Tl' I: ’lpl /\’(/)2 Iﬂ:M,ﬂ')=¢1 and M,ﬂ' ’:wQ
M, = Xy iff M, 7! = .

M, m = Fapy iff 3i > 0.M, 7 = .

M, = Gy iff Vi > 0.M, 7 |= 1),.

M, m = Uspy iff 3i > 0.M, 7 = oy

and V0 < j < i.M, 7l = 1.

o M, I:’lle’l/Jz IfFVZZO(VOS] <’i.M,7Tj bél/)l :>M,7Ti):1/}2

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 20 /67

Fundamentals of Temporal Logics CTL* Logic

CTL* Basic Operators "™

@ All CTL* operators can be derived from Vv, =, X, U, and E:

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 21/67

Fundamentals of Temporal Logics CTL* Logic

CTL* Basic Operators "™

@ All CTL* operators can be derived from Vv, =, X, U, and E:
o Let p € AP, true = pV —p (and false = —true)

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Basic Operators "™

@ All CTL* operators can be derived from Vv, =, X, U, and E:
o Let p € AP, true = pV —p (and false = —true)
o (p/\QbE—\(—\gp\/—\’(/))'

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Basic Operators "™

@ All CTL* operators can be derived from Vv, =, X, U, and E:
o Let p € AP, true = pV —p (and false = —true)

o (p/\QbE—\(—\gp\/—\’(/))'
o Fy = truelUyp,

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL* Logic

CTL* Basic Operators "™

@ All CTL* operators can be derived from Vv, =, X, U, and E:
Let p € AP, true = pV —p (and false = —true)

e A =(mpV),

Fo = trueUep,

G(p = —|F—|(p,

Ry = ~(-pU—y),

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 21/67

Fundamentals of Temporal Logics CTL* Logic

CTL* Basic Operators "™

@ All CTL* operators can be derived from Vv, =, X, U, and E:
Let p € AP, true = pV —p (and false = —true)

(p/\lﬂ = —\(—\(p\/—\’(/))'

Fo = trueUep,

G(p = —|F—|(p,

Ry = ~(=pU—y),

Ap = ~E-op.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 21/67

Fundamentals of Temporal Logics CTL Logic

Outline

© Fundamentals of Temporal Logics

o CTL Logic

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 22 /67

Fundamentals of Temporal Logics CTL Logic

CTL Syntax "™

o CTL is a sublogic of CTL*

e path formulae are limited to X, Fy, Gp, U, and pR,
e where ¢ and v are state formulae.

@ Therefore only 10 modal CTL operators:

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Syntax "™

o CTL is a sublogic of CTL*
e path formulae are limited to X, F¢, Gp, oUW, and R,
e where ¢ and) are state formulae.

@ Therefore only 10 modal CTL operators:
o AX and EX

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Syntax "™

@ CTL is a sublogic of CTL*

e path formulae are limited to X, Fo, Gp, U, and @R,
o where ¢ and ¢ are state formulae.

@ Therefore only 10 modal CTL operators:

e AX and EX

o AF and EF

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Syntax "™

@ CTL is a sublogic of CTL*
e path formulae are limited to X, Fo, Gp, U, and @R,
o where ¢ and ¢ are state formulae.

@ Therefore only 10 modal CTL operators:

o AX and EX
o AF and EF
o AG and EG

Radek Mafik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:

@ There are 3 basic CTL modal operators - EX, EG, and EU:

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 24 /67

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

@ There are 3 basic CTL modal operators - EX, EG, and EU:

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

e AR and ER

@ There are 3 basic CTL modal operators - EX, FEG, and EU:

Radek Mafik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

e AR and ER

@ There are 3 basic CTL modal operators - EX, FEG, and EU:

o AXLp = ﬁEXﬁ(,D

Radek Mafik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

e AR and ER

@ There are 3 basic CTL modal operators - EX, FEG, and EU:
4] AXLp = ﬁEXﬁ(,D
o EFp = E[trueUy]

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

e AR and ER

@ There are 3 basic CTL modal operators - EX, FEG, and EU:
o AXp=-EX-p
o EF ¢ = E[trueUy]
o AGyp = ~EF—p

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

e AR and ER

@ There are 3 basic CTL modal operators - EX, FEG, and EU:
o AXp=-EX-p
o EF ¢ = E[trueUy]
o AGyp = ~EF—p
o AFp =-EG—yp

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

e AR and ER

@ There are 3 basic CTL modal operators - EX, FEG, and EU:
e AXp=-EX—p o AlpU]
° EFSO = E[trueUgO] = ﬁE[ﬁ’(/}U(ﬁ(p N ﬁ’lp)] N ﬁEGﬁ’Lp
o AGp = ~EF-yp
] AFLP = ‘!EGﬁQO

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

e AR and ER

@ There are 3 basic CTL modal operators - EX, FEG, and EU:

e AXp=-EX—p o AlpUt]
o EFp = E[trueUy) = 2E[~U (=9 A ~9)| A 2EG—)
o AGyp = ~EF—p o AlpRyp] = —E[~pU—)]

] AFLP = ‘!EGﬁQO

November 23, 2020

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics

Fundamentals of Temporal Logics CTL Logic

CTL Modal Operators "™

@ Modal CTL operators:
e AU and EU

e AR and ER

@ There are 3 basic CTL modal operators - EX, FEG, and EU:

° AXp=-EX~p o AlpU]

o EFp = E[trueUy] = 2E[~U (=9 A ~9)| A 2EG—)
o AGyp = —EF—¢p o AlpRyp] = —E[~pU—)]

o AFp = -EG—y o E[pRy] = ~Al~pU—]

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

Fundamentals of Temporal Logics LTL Logic

Outline

© Fundamentals of Temporal Logics

o LTL Logic

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 25 /67

Fundamentals of Temporal Logics LTL Logic

LTL Syntax "™

@ LTL is a sublogic of CTL*
o It only allows formulas of the form A, in which state subformulae are
atomic propositions.
o LTL formula is created according to the following grammar:
o ¢ = Ay (A is often omitted)
o Ypu=p|W|YVY YA | XY | FY|GY | YUY | YR,
o where p € AP.
e LTL provides expressions about specific paths in a given Kripke's
structure
@ i.e. ignores branching

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 26 /67

Fundamentals of Temporal Logics LTL Logic

LTL, CTL, CTL* M

@ LTL and CTL cannot be compared:

o For example, CTL cannot express the LTL formula A(FGp)
e For example, LTL cannot express the CTL formula AG(EFp)

@ CTL* covers both LTL and CTL

o disjunction (A(F'Gp))V (AG(EFp)) cannot be expressed in either LTL
or CTL.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 27 /67

UPPAAL Requirements Specification in UPPAAL

Outline

© UPPAAL
@ Requirements Specification in UPPAAL

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 28 /67

UPPAAL Requirements Specification in UPPAAL

[UPP10]

BNF grammar of specification language

BNF grammar

A[|Ezpression

E <> Ezxpression
E[] Ezpression
A <> Expression

Ezpression — — > Expression

Radek Mafik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 29 /67

UPPAAL Requirements Specification in UPPAAL

[UPP10]

BNF grammar of specification language

BNF grammar

Al| Expression
E <> Ezxpression
E[] Ezpression
A <> Expression

Ezpression — — > Expression

Notes

| A\

@ No expression can have side effects.

@ The expression process.location tests whether a certain process is in a
given position.

A

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 29 /67

UPPAAL Requirements Specification in UPPAAL

[UPP10]

Examples of Specification Language

BNF grammar
° All<2
o Invariantly 1 < 2

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 30/67

UPPAAL Requirements Specification in UPPAAL

[UPP10]

Examples of Specification Language

° All<2
o Invariantly 1 < 2
o F <> pl.csandp2.cs

e True, if the system can reach a state in which processes p1 and p2 are
in their position cs

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 30/67

UPPAAL Requirements Specification in UPPAAL

[UPP10]

Examples of Specification Language

° All<2
o Invariantly 1 < 2
o F <> pl.csandp2.cs

e True, if the system can reach a state in which processes p1 and p2 are
in their position cs

o A <> pl.csimplynotp2.cs

o Invariantly process p1 in position cs implies that process p2 is not in
position cs.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 30/67

UPPAAL Requirements Specification in UPPAAL

[UPP10]

Examples of Specification Language

° All<2
o Invariantly 1 < 2
o F <> pl.csandp2.cs

e True, if the system can reach a state in which processes p1 and p2 are
in their position cs

o A <> pl.csimplynotp2.cs

o Invariantly process p1 in position cs implies that process p2 is not in
position cs.

e Al|notdeadlock

o Invariantly, the process does not contain a deadlock.

Radek Mafik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 30/67

UPPAAL Model Language

Outline

© UPPAAL

@ Model Language

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 31/67

UPPAAL Model Language

[BDLO5]

Conditions over clocks

o C ...clock set

e B(C) ...a set of conjunctions over simple conditions of type

@ rXc
e r—yc
o where
o z,y€eC,
e ceN,
o xE {<,<,=,>,>}

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

UPPAAL Model Language

[BDLOS]

Query Language

o State formulae ... describe individual states.
o Path formulae ... are evaluated along model paths and traces.

e reachability,
o safety,
o liveness.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 33 /67

UPPAAL Model Language

[BDLOS]

State Formulae

@ an expression that can be evaluated for a given state without having
to analyze the behavior of the model.

@ a superset of guards, i.e. it has no side effect,

@ unlike guards, the use of disjunctions is not limited.
@ Test whether the process is in the given position ... P./
e P ...process
e [...position
o deadlock . ..
e a special state formula, which is fulfilled for all blocked states,
o A state is blocked if there is no action transition from that state or any
delayed state successor.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 34 /67

UPPAAL Model Verification Properties

Outline

© UPPAAL

@ Model Verification Properties

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 35 /67

UPPAAL Model Verification Properties

Reachability

@ the simplest feature,

@ asks if there is a possibility that the given state formula ¢ is satisfied
in every reachable state.

@ i.e. there is a path from the initial state such that ¢ will be fulfilled
once along this path.
@ check the basic properties of the model

o that at least the basic behavior can be achieved,
e an example of a communication protocol with one transmitter and one
receiver
@ it is possible to send a message by transmitter at all.
@ The message is eventually received by the receiver.

e in UPPAAL: E<>¢p

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 36 /67

UPPAAL Model Verification Properties

Safety "%

anything bad will never happen
an example of a nuclear power plant model

o the operating temperature is always (invariantly) below a certain
threshold,
o the container will never melt

a variant: something is not possible to happen at all

an example of playing a game
o The safe state is that if we can still play the game, then there is no
way to lose it.

e in UPPAAL:

e is formulated positively

let ¢ be a state formula

Al = -EQ—y ... should be true in all reachable states
E[lg ...there is a path along which ¢ is always true

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 37/67

UPPAAL Model Verification Properties

[BDLOS]

Liveness

o something will eventually happen one day

@ examples
e pressing the on button on the remote control will cause the TV to turn
on once.
e in the communication protocol model:
any message sent will be received eventually.
e in UPPAAL:
o A<>p =-FE0-p ... e will always be fulfilled eventually,
o v -—>1=A0(p = AQY) ...
whenever ¢ is fulfilled, then ¥ will be met eventually.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 38/67

UPPAAL Time in UPPAAL

Outline

© UPPAAL

@ Time in UPPAAL

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 39/67

UPPAAL Time in UPPAAL

[BDLOS]

Observer

@ an additional automaton

@ detects events without having to change the model itself.

Example

p1
reset?

loop x>=2 || idle taken
reset!

X =

@ clock reset detection

@ extra clock reset (x:=0)

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 40 /67

UPPAAL Time in UPPAAL

[BDLOS]

Initial Variant of Example

p1
reset?

loop ¥>=2

reset!

x:=0

|f;’ Place template instantiations hares.
pl = PL1(};
obhs = Chsl();

]// Place global declarations here.
clock ®;

chan reset;
S/ List ons or mors procsssss to be comp

system pl, ohs;
@ The goal is to stay in position if the (invariant) condition on the clock
applies and then leave the position.

@ Option 1: no invariant

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 41 /67

UPPAAL Time in UPPAAL

[BDLOS]

1. Variant of the Example

hodiny x

loop X>=2 af
reset!

2 4 6 8 gas
@ The goal is to stay in position if the (invariant) condition on the clock
applies and then leave the position.
@ Option 1: no invariant
@ A[] obs.taken imply x>=2
@ E<> obs.idle and x>3

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 42 /67

UPPAAL Time in UPPAAL

[BDLOS]

2. Variant of the Example

loop — o
reset! [T
N 4 R4
X<=3
2 4 6 8
@ The goal is to stay in position if the (invariant) condition on the clock

applies and then leave the position.

Option 2: with invariant
A[] obs.taken imply (x>=2 and x<=3)
E<> obs.idle and x>2

e E<> obs.idle and x>3 ...is not satisfied

© A[] obs.idle imply x<=3

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

UPPAAL Time in UPPAAL

[BDLOS]

3. Variant of the Example

hodiny x

loop, x>=2 and x<=3
reset!

@ The goal is to stay in position if the (invariant) condition on the clock
applies and then leave the position.

@ Option 3: without invariant with guards
@ A[] x>3 imply not obs.taken ...deadlock occurs

@ A[] not deadlock ...is not satisfied

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 44 /67

UPPAAL Time in UPPAAL

[BDLOS]

4. Variant of the Example

hodiny x

|00p ::2 ar
reset!

The goal is to stay in position if the (invariant) condition on the clock
applies and then leave the position.

Option 4: without invariant with equality guards

A[] x>2 imply not obs.taken ...deadlock occurs
A[] not deadlock ...is not satisfied

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 45 /67

UPPAAL Time in UPPAAL
[BDLOS]

5. Variant of the Example

hodiny x

The goal is to stay in position if the (invariant) condition on the clock
applies and then leave the position.

Option 5: with invariant and with equality guards
A[] obs.taken imply x==2

E<> obs.idle and x>2 ...is not satisfied

A[] obs.idle imply x<=2

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

UPPAAL Urgent Transitions UPPAAL

Outline

© UPPAAL

@ Urgent Transitions UPPAAL

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 47 /67

UPPAAL Urgent Transitions UPPAAL

Example 1, processes P, () ™

@ The goal is to make the sync transition as
1 s1 soon as possible.

a7

@ i.e. as soon as both P and () automata are

2 &2 ready (simultaneously in positions I; and s1).

@ How to choose a model when they get into
positions at different time instants?

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 48 / 67

UPPAAL Urgent Transitions UPPAAL

Example 1, processes P, (), X3

X3

@ The goal is to make the sync transition as

H o1 >3 soon as possible.
’ , @ i.e. as soon as both P and () automata are
a art . . .
ready (simultaneously in positions 1 and s1).
12 s2

@ How to choose a model when they get into
positions at different time instants?

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 49 /67

UPPAAL Urgent Transitions UPPAAL

Example 1, processes P, (), X3

X3

@ The goal is to make the sync transition as
soon as possible.

] s1 x>3
’ , @ i.e. as soon as both P and () automata are
a art . . .
ready (simultaneously in positions 1 and s1).
12 s2

@ How to choose a model when they get into
positions at different time instants?

e Solution: urgent chan a

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 49 /67

UPPAAL Urgent Transitions UPPAAL

Example 2, processes P, (), X3

==5 =5 @ The goal is to make a transition with the
12 ql condition ¢ == 5 once it is met..

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 50 /67

UPPAAL Urgent Transitions UPPAAL

Example 2, processes P, (), R, X3

@ The goal is to make the transition with the

F=8x=0 condition 7 == 5 as soon as possible.

q1

@ i.e. as soon as both P and () automata are
ready (simultaneously in positions 1 and s1).

@ How to choose a model when they get into
positions at different time instants?

x3

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 51/67

UPPAAL Urgent Transitions UPPAAL

Example 2, processes P, (), R, X3

@ The goal is to make the transition with the

":f""‘:“ condition 7 == 5 as soon as possible.
@ i.e. as soon as both P and () automata are
ready (simultaneously in positions 1 and s1).
@ How to choose a model when they get into
_ - positions at different time instants?
v s @ Solution:

@ urgent chan go
@ another process that emits an action go!

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 51/67

UPPAAL Urgent Transitions UPPAAL

[Dav05]

Urgent Channels

urgent chan hurry
Semantics:

o
o
@ There is no delay if an edge with an urgent action can be executed.
o
o

Restrictions:

e No clock guards are allowed on the edges of the urgent action.
e Invariants and guards on data variables are allowed.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 52 /67

UPPAAL Urgent Transitions UPPAAL

Urgent Position using Clocks

R
1" 9 r
a? | x=0,y=0 al .
2@, g1
=0 @ Suppose we model a simple system M that
accepts packages on channel a and
% immediately sends them to channel b
? @ P, models the system using the clock x
y>3

Radek Maf¥ik (radek.marik@fel.cvut.cz)

Temporal Logics November 23, 2020 53 /67

UPPAAL Urgent Transitions UPPAAL
[Dav05]

Urgent Position

I ’ p
a7 |y=0 || ,, .
2(0) qt @ Suppose we model a simple system M that
N accepts packages on channel a and
immediately sends them to channel b
= @ P, models the system using an urgent
. position
ly>3 @ P, and P, have the same behavior

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 54 /67

UPPAAL Urgent Transitions UPPAAL

[Dav05]

Urgent Position

Semantics:

There is no delay in the urgent position.

Note:

e Using urgent positions reduces the number of clocks in the model and
thus the complexity.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 55 /67

UPPAAL Examples ~ Trains Crossing a Bridge

Outline

@ UPPAAL Examples
@ Trains Crossing a Bridge

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 56 /67

UPPAAL Examples ~ Trains Crossing a Bridge

[BDLOS]

Example Idea

Stopable
Area

[10,20]

Crossing

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 57 /67

UPPAAL Examples ~ Trains Crossing a Bridge

[BDLOS]

Example Specifications

Textual Specifications

@ Bridge access control for several trains.

@ A bridge as a critically shared resource can only be crossed by one
train.

@ The system is defined as several trains and a controller.

@ The train cannot be stopped immediately, it also takes time to start.

v

58 /67

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020

UPPAAL Examples ~ Trains Crossing a Bridge

[BDLOS]

Timing and Communication

Time constraints and communication

@ The train sends a appr! signal on time when it arrives at the bridge.
@ Then the train has 10 time units to receive a stop signal,
o this allows a safe stop in front of the bridge.

@ After these 10 time units, it takes another 10 units for the train to
reach the bridge if it is not stopped.

@ If the train is stopped, the train will start after
it receives the go! signal from the bridge controller.

@ When the train leaves the bridge, it sends a signal leave!.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 59 /67

UPPAAL Examples ~ Trains Crossing a Bridge

[BDLOS]

Synchronization Signals

leave[id]!

Stopable
Area

[10,20]

stop[id]? golid]?

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 60 /67

UPPAAL Examples ~ Trains Crossing a Bridge

[BDLOS]

Train Template

X>=3
leavelid]!
Safe Cross
©)(<:5
appr[id]!
x=0

Appr
x<=20

x<=10
stopl[id]?

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 61 /67

UPPAAL Examples ~ Trains Crossing a Bridge

[BDLOS]

Bridge Controller Template

e:id t e:id t
len>0 len == e == front()
go[front()]"! appr[e]? leavele]?

enqueue(e) | dequeue()

N T2 J
K Occ
e:id t
appr(e]? stopltail()]!
enqueue(e)
C

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 62 /67

UPPAAL Examples ~ Trains Crossing a Bridge

Model Verification ®°*

E<> Gate.Occ

E<> Train(0) .Cross

E<> Train(1).Cross

E<> Train(0) .Cross and Train(1l).Stop

E<> Train(0) .Cross and (forall (i : id_t) i != 0
imply Train(i).Stop)

A[] forall (i : id_t) forall (j : id_t) Train(i).Cross
&& Train(j).Cross imply i == j

A[] Gate.list[N] ==

Train(0) .Appr --> Train(0).Cross

Train(1) .Appr --> Train(1).Cross

Train(2) .Appr --> Train(2).Cross

Train(3) .Appr --> Train(3).Cross

Train(4) .Appr --> Train(4).Cross

Train(5) .Appr --> Train(5) .Cross

@ A[] not deadlock

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 63 /67

UPPAAL Examples Game NIM

Outline

@ UPPAAL Examples

@ Game NIM

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 64 /67

UPPAAL Examples Game NIM

Simple Variant NIM

The Nim Number Game

Whoever takes the last proton wins!
Press the "I'm ready! Let's start!" tutton to begin!

0WooLoLoLLLLLE

@ NIM is a game based on logic and strategy.

@ 2 players are playing.

@ The player removes one to M AX (2) items (matches, protons) from
the series during his turn.

@ The player who removes the last thing wins.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 65 /67

UPPAAL Examples Game NIM

Classic Variant NIM

NIM is a game based on logic and strategy.
2 players are playing.

The players remove objects from different piles/rows.

The player must remove at least one object during his turn.

On his turn, the player removes any number of objects, all of which
belong to one pile.
Basic variants of the game:

e Normal ... The player who removes the last thing wins.
e Loss ... The player who removes the last thing loses.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November 23, 2020 66 /67

UPPAAL Examples Game NIM

Literatura |

[BDLO5] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL, updated 25th october 2005. Technical
report, Department of Computer Science, Aalborg University, Denmark, October 2005.

[Dav05] UPPAAL tutorial at rtss'05 (), December 2005.
[UPP09] UPPAAL 4.0: Small tutorial, November 2009.

[UPP10] Tool environment for validation and verification of real-time systems (UPPAAL pamphlet).
http://www.it.uu.se/research/group/darts/papers/texts/uppaal-pamphlet.pdf, September 2010.

[Voj10] ~ Tomas Vojnar. Formal analysis and verification. Lecture handouts,
http://www fit.vutbr.cz/study/courses/FAV /public/, August 2010.

[Wik10] Linear temporal logic. http://en.wikipedia.org/wiki/Linear_temporal_logic, November 2010.

Radek Maf¥ik (radek.marik@fel.cvut.cz) Temporal Logics November

	UPPAAL Tool
	Modeling and Verification Procedure

	Fundamentals of Temporal Logics
	Processing Paths and Time
	CTL* Logic
	CTL Logic
	LTL Logic

	UPPAAL
	Requirements Specification in UPPAAL
	Model Language
	Model Verification Properties
	Time in UPPAAL
	Urgent Transitions UPPAAL

	UPPAAL Examples
	Trains Crossing a Bridge
	Game NIM

