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Goals

Describe likely shapes and appearances
Low-dimensional description

A priorl model for segmentation

Improve segmentation results

Simplify optimization



Models and technigues

* Point distribution models (PDMs)
* Active shape models - active contours + PDMs

* Active appearance models

*  Sonka, Hlavac, Boyle book, Chapter 10
. Svoboda, Kybic, Hlavac companion book, Chapter 10
. Cootes et al: Active Appearance Models

*  Cootes et al: Active Shape Models
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Point model example

Training set
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Alignment

Suppose we have a moving shape and a reference shape described by landmark coordinates
(xi,y:) and (x!,y!), respectively. We need to find a transformation consisting of rotation,
translation, and scaling that transforms the moving shape onto the reference shape in the
‘best” way [Section [J:10.3], defined as minimizing a sum of squared distances
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We decompose the minimization of E(f, s,t,,1,) to an outer minimization with respect
to # and inner minimization with respect to s, t,, t,. Minimization with respect to s, .,
t, is performed by setting the corresponding partial derivatives to zero
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which leads to the following system of linear equations
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where ¢(a,b,0) = asinf + beosf. The dependency E(f) = min ¢ ;) E(0,s,t.,t,) is
non-linear, so the outer minimization with respect to # is performed numerically. This
normally only needs a few iterations, as the function is smooth and one dimensional.






Algorithm 10.5: Approximate alignment of similar training shapes

1.

o

In a pairwise fashion, rotate, scale, and align each x* with x!, for i =2,3,..., M
to give the set {x!,x2,x3,...,xM}.
Calculate the mean of the transformed shapes (the details of this procedure are

outlined in Section 10.3).

*

Rotate, scale, and align the mean shape to align to x!

Rotate, scale, and align X2,%3,...,%™ to match to the adjusted mean.

If the mean has not converged, go to step 2.

mean shape is given by
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Statistical model
x' =%x'—x.

IS a zero-mean multivariate Gaussian random vector of dimension Md.
Covariance matrix:
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Dimensionality reduction

Find a low dimensional model for x 5X

/

X ~ X+ P; by

P, = p'p’p’...p']
bt — [blabQJ .- '7bt]T



Best projection

mmEDmx—pwﬂ
assume ||p|| =1 then b= (p,dx)
max E [(p,0x)*] = p' E [(6x)" (6x)| p = p' Sp
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The basis p is the eigenvector of S corresponding to the largest eigenvalue.



PCA

SPi = \ipi -

Use K largest eigenvalues. X &% 4 Pt bt

Further, it can be shown that the variance of b; over the training set will be the
associated eigenvalue \;; accordingly, for ‘well-behaved’ shapes we might expect

=3V A < b <3V

—that is, most of the population is within 3¢ of the mean. This allows us to generate,
from knowledge of P and \;, plausible shapes that are not part of the training set.



TABLE 1
Eigenvalues of the Covari-

ance Matrix Derived from a
Set of Resistor Shapes
. A
Eigenvalue — X 100%
At
A 66%
A 8%
Az 5%
A4 4%
)\5 3%

3%

~2/4,



Metacarpal bone

Index i | Ai/Atotar [70] | Cumulative total
1 63.3 63.3
2 10.8 74.1
3 9.5 83.6
4 3.4 87.1
5 2.9 90.0
6 2.5 92.5
7 1.7 94.2
8 1.2 95.4
9 0.7 96.1
10 0.6 96.7
11 0.5 97.2
12 0.4 97.6
13 0.3 97.9
14 0.3 98.2
15 0.3 098.5
16 0.2 08.7




Figure 10.5: (a) The mean shape (in red) superimposed over all shapes after alignment. Changes
corresponding to the (b) first and (¢) second mode. The mean shape is in red, the shape
corresponding to —3v/\ in blue and the shape corresponding to +3+/X in green.
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FIG. 12. Effects of varying each of the first four parameters of the heart ventricle model individually.
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Liver shape variations. Columns = eigenmodes.




Fiting PDM to data
Active Shape models

Given an image and an initial position find
* Pose (translation, rotation, scale)
* Shape parameter vector b



Target

Model boundary

Search path
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Fitting an ASM

* Find target positions for each landmark
e Adjust pose
* Adjust model parameters b

* |terate until convergence



5. Determine the model adjustment db; that best approximates 0xX. From equation
(10.5) we have

—

X~ X+ FP; by
and we seek db; such that

X 4+ 0x =X+ Pi(bt + dby) .

Hence

5§ ~ Pt 5bt :

With the properties of eigen-matrices, we can deduce

&by = P 6%
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Figure 10.6: (a) Hand image. (b) The corresponding edge map with superimposed initial shape.
(c) First iteration of the fitting process with the shape contour in red, current landmarks positions
as blue circles, search lines in green. and new landmark positions as red circles. (d) Final fit.



Figure 10.12: Fitting an ASM to a metacarpal; various stages of convergence—initialization, 3,
6, and 10 iterations. Courtesy of N. D. Efford, School of Computer Studies, University of Leeds.



Heart segmentation (3D)

* Non-rigid registration for alignment

* No need to mark landmarks in all images

* Landmarks propagated from the atlas shape
* or use keypoint matching

* Segmentation of new images with ASM
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Active appearance models

* ASM + linear appearance model
* Low-dimensional model

* Goals:
- Model appearance, generate synthetic shapes
- Segmentation
- Classification and diagnostics



[ ] & F ]
l"" 4*“ »
» t!.l j':‘ -
[ [

- . . -
. Cow,® »
L J
L .ﬁ.='l'.l ]
. & 5

" a
. e gse’ *
> L
] .
.

Labelled image Points Shape-free patch



Simultaneous change of appearance and shape






Find landmarks for training images.

Algorithm 10.7: AAM construction

1. Compute an ASM and approximate each shape sample as a linear combination
of eigenvectors, where by = Pl (x — X) represents the sample shape parameters
(equation 10.3).

2. Warp each image to the mean shape using a linear or non-linear image interpolation.

"y

3. Normalize each image to the average intensity and unit variance g.

4. Perform a PCA on the normalized intensity images.



5. Express each intensity sample as a linear combination of eigenvectors, where
b, = Pg (g — g) represents the sample gray-level parameters.

6. Concatenate the shape coefficient vectors b, and gray-level intensity coefficient
vectors b, in the following manner

Wb, [WPI(x-x) .
o= e | .

where W is a diagonal weighting matrix that relates the different units of shape
and gray-level intensity coeflicients.

7. Apply PCA to the sample set of all b vectors, yielding the model
b =Qc, (10.7)

where @ is a matrix consisting of eigenvectors (from equation 10.6) and ¢ are the
resulting model coefficients characterizing how the model instance differs from the
mean shape and mean appearance. In other words, with the zero vector ¢ = 0, the
modeled instance corresponds to the mean shape and appearance.



AAM fitting

* |nput: Image
* Output:
— geometrical transformation (pose)

- shape parameters
- appearance parameters



Residual minimization

model gray-level intensity vector g,,  from appearance coefficients ¢

target image patch warped to the mean shape g, = Tu ' (g;)
global intensity transformation u

Minimize residual r(p) = g:(p) — 2n(p) .

Assume linearity by Taylor expansion

2 p,
dp
Jacoblan matrix is
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Optimal update

dp = argmin [r(p + op)|
op

Least-squares solution using the Taylor linearization
T S —1 .
. orl Or orl
(l) _ — _— —17 D — —R[‘ D .
= () For®) = e
Jacobian is assumed constant, R is constant

or(B) _ on(p’)
Op op

Jacobian is estimated numerically from random perturbations

Image multiresolution for speed-up.



Algorithm 10.8: Active Appearance Model matching

L.

Place an appearance model roughly on the object of interest using the parameters
c, t, and u and compute the difference image g, — g,,.

2. Compute the RMS of the difference image, E(r) = |r[?.

=~

pel =R B

Compute the model corrections dp as derived above from the residual (equations

10.15).

Set k = 1. ejraizine: shape | |global appearance

Compute new model parameters as ¢ :=c¢ — kdc, t :=t — kdt, and u := u — kdu.
Based on these new parameters, recompute g, — g,,, and recalculate the RMS.
If the RMS is less than E, accept these parameters and go to step 3.

Else set k to 1.5, 0.5, 0.25, etc. and go to step 5. Repeat steps 5—8 until the error
cannot be reduced any further.
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Cardiac segmentation using AAM,



Final position
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Figure 10.17: Comparison of 2D conventional AAM and multistage hybrid ASM/AAM segmenta-
tion of the left and right ventricles in a cardiac short-axis magnetic resonance image. (a) Original
image. (b) Conventional AAM segmentation demonstrating a good gray level appearance fit but
locally poor border positioning accuracy (arrows). (c¢) Hybrid ASM/AAM .:Lpprc:-dch result shows
substantial improvement in border detection positioning (arrows). ©2001 IEEE [\Mitchell ot al.,
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3D AAM initial position



final position



Figure 10.19: Multi-view AAM detected contours (white dotted lines) for two patients (top and
bottom row) in a 4-chamber (left), short-axis (middle) and 2-chamber view (right). ©@Springer
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Figure 10.20: Robust AAM segmentation of proximal phalanx X-ray image with implants.
(a) Manually determined bone contours. (b) Result of AAM segmentation—landmarks marked
by ‘+’. (c) Robust AAM approach copes with the gray level disturbance caused by implants and
provides acceptable segmentation. ©Springer Verlag [Beichel et al., 20055], with kind permission of



ASM, AAM - Conclusions

+ Powerful stochastical modeling of shape and appearance
+ Regularization for segmentation

+ Data driven descriptors

+ Fast fitting algorithms exist

- Needs data

- Needs annotations

- Fitting may fail

- Assumes linearity and normality (extensions exist)



