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Besl, McKey: A method for registration of 3D shapes. 1992

Key points:
» Find a geometric transformation between two point sets or a point
set and a parametric model
» Matching closest points
> [terative
» Rigid transformations (extensions possible)
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3D Example
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Fig. 12. Model surface: Range image of mask: 8442 triangles.
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Geometric models

Points

Lines

>

>

» Triangles
» Parametric models
>

Implicit models

Finding distance

» closed form
> iteratively (e.g. Newton method
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Quaternions for rotation representation

» “Four-vector”

d=(90.91,92,93) = qo + iq1 + jg2 + kg3 = qo + (g1, 92, g3), with
2 :j2 = k2 =_1

» Rotation by angle o around axis u
—_ a HIS 0 a 0 Ha 0
q=cos 5 +usin 5 = (cos§7 Ux Sin 5, Uy Sin 5, Uz Sin 5)

> Applying a rotation

Rv=d v a ‘with g-! = (90,—91.—42.~g3)
ava 9T Gradraie

> Rotation matrix from a unit quaternion (g3 + g5 + ¢35 +q3 = 1)

G+ —-a-d 22(qlq22 - qzoqa) ) 2(q143 + Gogz)
R= 2(q192 + 9093) g+ @ —ai — a3 2(49293 — qoq)
2(g195 — goq2)  2(q203 + Goq1) @2 + % — ¢ — ¢?
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Closed-form for rotation and translation

The unit quaternion is a four vector §r = [goq1 g2g3]*, where
go > 0, and g5 + q¥ + % + ¢% = L. The 3 x 3 rotation matrix
generated by a unit rotation quaternion is found at the bottom
of this page. Let gr = [(;4(;151;'5;]t be a translation vector. The
complete registration state vector § is denoted § = [qr|7r]"
Let P = {p;} be a measured data point set to be aligned with
a model point set X = {&;}, where N, = IV, and where each
point p; corresponds to the point ; with the same index. The
mean square objective function to be minimized is

N
" L s San o
fq)= A z Z: — R(gr)p: — arl®. (22)
P =1
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Closed-form for rotation and translation (2)

The “center of mass” fI,, of the measured point set P and the
center of mass ji, for the X point set are given by

]

1 & 1 O
iy =— 3 7, i=-—9 . 23
fip N, - lpz and ji, N _=1-’r (23)

i

=

The cross-covariance matrix ¥, of the sets P and X is given
by

N, N,

- e - -+ 1 — — —r
(B = )& = 1)) = R DB = Ayt
P

i=1

1
sz:N_

[
P =1

7/35



Closed-form for rotation and translation (3)

The cyclic components of the anti-symmetric matrix 4,; =
(Zpr — £I,)i; are used to form the column vector A =
[A23 As;  App)T. This vector is then used to form the
symmetric 4 x 4 matrix Q(X,.)

tr(Epe) AT

Spe) =
Q%pr) A Spe + BF, — (T I3

(25)

where I3 is the 3 x 3 identity matrix. The unit eigenvector
gr = (g0 @1 g2 gqa]" corresponding to the maximum
eigenvalue of the matrix Q(%,,) is selected as the optimal
rotation. The optimal translation vector is given by

Jr = iz — R(qr)/l,. (26)

Horn, Closed-form solution of absolute orientation using unit quaternions. J.Opt. Soc. Amer., 1987
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Finding closest points

» Brute force O(N,Ny)
» Grid method, k-D tree, O(N,log Ny )on the average

14
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-t -t
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lterative closest point algorithm

Initialize q as identity, Pp = P. Repeat:

a. Compute the closest points: Y, = C(P,, X)) (cost:
0(N,N.) worst case, (N, log N, ) average).

b. Compute the registration: (gk,di) = Q(Po, Yi)
(cost: O(N,)).

c.  Apply the registration: Pi1 = ¢(F) (cost
O(N,)).

d. Terminate the iteration when the change in mean-
square error falls below a preset threshold 7 > 0
specifying the desired precision of the registration:
dp — dk+1 < T.
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ICP convergence

and proved. The key ideas are that 1) least squares registration
generically reduces the average distance between correspond-
ing points during each iteration, whereas 2) the closest point
determination generically reduces the distance for each point
individually. Of course, this individual distance reduction also
reduces the average distance because the average of a set of
smaller positive numbers is smaller. We offer a more elaborate
explanation in the proof below.

Theorem: The iterative closest point algorithm always con-
verges monotonically to a local minimum with respect to the
mean-square distance objective function.
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Parameter evolution

o (30) Horizontal Axis =
Number of Lisrations
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Accelerated ICP

Linear Approximation The Accelerated

ICP Algorithm

Parabola

dri-2)

Parabola Update
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Accelerated parameter evolution
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Initial pose estimation

» [CP finds only local minima, sensitive to initial pose
» If sufficient overlap — not too sensitive to translation

» Uniform/random sampling of initial poses

Moment matching

» align centers of gravity

» calculate covariance matrices
» find and match eigenvectors
» rotate to align eigenvectors
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Conclusions

Simple and fast method for matching 2D /3D shapes or point sets
Needs good initialization

>

>

> Sufficient overlap

» Widely used in practice
>

Many extensions to make it more robust (e.g. ICRP, soft
assignment)

16/35



Myronenko, Song: Point Set Registration: Coherent Point Drift
2010

Key points:

» Probabilistic extension to ICP
Both rigid and nonrigid registration

>
» Gaussian density model
> Soft assignment

>

Can handle outliers
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Example point set registration problem
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Probabilistic model

We consider the points in Y as the GMM centroids and the
points in X as the data points generated by the GMM. The
GMM probability density function is

M+1

pix) = Z Plm)pix|m), (1)

m=1

X ¥ S
where p(x|m) = tz—ll,ml.‘:{p_ = . We also added an
e N
additional uniform distribution p(x/M +1) =+ to the
mixture model to account for noise and outliers. We use

2

equal isotropic covariances o~ and equal membership
1

probabilities P(m) =4 for all GMM components
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Probabilistic model (2)

(m=1,....M). Denoting the weight of the uniform

distribution as w, 0 < w < 1, the mixture model takes
the form

1 -
plx) = wg+ (1—w) Zﬂp[xhn). (2)

m=1

We reparameterize the GMM centroid locations by a set of
parameters # and estimate them by maximizing the
likelihood or, equivalently, by minimizing the negative
log-likelihood function

N M1
E(f,0%) = — Zlug Z Plm)p(x,|m), (3)

n=1 m=1
where we make the i.i.d. data assumption. We define the

Centroid locations y(60)
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EM algorithm

» Find 6,6°by alternative maximization of £

» Expectation step calculates posterior prob. of y,given x,for fixed
0,0?

P(m|x,) = P(m)p(x,|m)/p(x,)

» Maximization step minimizes the expected negative log-likelihood
Q=E[logP(8,0|X,Y)] > E for fixed P°"4(m|x,)

[ M+1

N
Q= — Z Z PP (m|x,,) log( P"™" (m)p"" (x,,|m)).

n=1 m=1
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Minimization of Q

N
N

1 K :
Q(ﬁ: UE 252 Z Z Pﬂ] i{:Tn|xu |xn - (}'m-'g)nz

n=1 m=1

NP log o”,

Bx T o
Pojr‘r{::rn.|xn) - . 1| |me =Ty 0oty B !
i‘f | exp_iHTH +c
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Rigid and affine transformations

MN
l r
QR,t,5,0%) = o= 3 PM(mlx,)|x, - sRy, —t|’

m n=1

NpD .
P loge?, st.RTR =1, det(R) = 1.

Can be minimized analytically for R, t, s, 62. R is found using SVD.
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Rigid coherent point drift

Rigid point set registration algorithm:
e Initialization: R=I1,t =0,s=1,0<w <1
N M 2
ot = Df&'hf Zn=1 Z‘m:l ”Xn o ym”
o EM optimization, repeat until convergence:
e E-step: Compute P,

xp 3z llsn — (sRym +6) |2

Pmn = T )
A - — (=R = - - A
S, exp” 37 0ROy o2y p/a s

e M-step: Solve for R, s,t,0%:
- Np =1TP1, py = = XTPT1, py = 5= YTP1,
X=X-1uT, Y=Y 1,7,
- A=X"P"Y, compute SVD of A = USV7,
- R =UCVT where C = {(1,..,1,det(UVT)),
_ _ u(ATR)
T w(¥TaPLY)’
“t = pux — sRpy,
0 = gl (X d(PT1)X) - str(ATR)).
e The aligned point set is 7(Y) = sYR? + 1t7,
e The probability of correspondence is given by P.
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Affine coherent point drift

Affine point set registration algorithm:
. Initialization B=1Lt=00<w<1
2
J - DJV M Zn LZ‘N& 1 |x'ﬂ _yﬂf&”
e EM optimization, repeat until convergence:
e E-step: Compute P,

1 s 2
— —(B +t
exp a2 [[xn —(Bym +t}|

Pmn =

thf exp m”’c = Byk+t)”2+(2,ﬂ_gz)nx’2ﬁ%
e M-step: Solve for B, t, 0%
- Np =1TP1, ux = ,\} XTPT1, puy = ﬁY’TPI,
X=X- 1ul Y=Y- 1;1,;{,
B = (XTPTY)(YT q(P1)Y)!
b=y — B,u,y, . A A
-0?=§ip (tr(XT q(PT1)X) — tr(XTPTYBT)).
e The aligned point set is 7(Y) = YBT + 1t7,
e The probability of correspondence is given by P
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Nonrigid registration
» Variational formulation with a smoothness regularization term

a o A
T(Y, o)=Y +o(Y). [F(:0)=E@o)+50(v).

2 " ‘l':)'t.l,' ‘!
ol = [ Sl
== Ju 2o (v) = lollge = | Ll
> Minimizing
1 MN
Q%) =553 2 PHlmbxa)lx = (v + oy
_IPVPD 2 A 9
+— log o +-§4|Lg1|_

> Solution must have the form (from Euler-Lagrange equations) with a
Green's function LLG =0

M
L'(ZJ' = z WH,-G{Z_-}'“.J + L':'I{z}'

m=1
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Regularization term

, |r'|(s}|! _ [ x| gt . )
p) = — Is. i wwln) = — || e | "dx.
bl v) .[m“ &s) ds, darer(v) IR E T | f(x}| dx

» Green's function is a Gaussian

» Coefficients w minimizing Q found by

(G + A\?d(P1) )W =d(P1) 'PX - Y
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Non-rigid coherent point drift

Non-rigid point set registration algorithm:
M,N

1|
Initialization: W = 0,02 = ——— n = Yml’
e Initialization o DN .,MZL;”}{ Yol
e Initialize w(0 < w < 1), 3>0, A >0,

—ghz lyi—y;l?
e Construct G: g;; = exp 27¢ ,
e EM optimization, repeat until convergence:
e E-step: Compute P,

= L Ixn = (¥ +C (m, )W) | 2

_ exp 20
Pmn = 1 — (k.. pl D72
M exp goz |[en =y +G (kW | 4w (@2ro2)] /2pm
e M-step:

- Solve (G + \o2d(P1) ") )W =d(P1)"'PX - Y
-Np=1"P1, T=Y + GW,
- 0? = i (tr(XT d(PT1)X) — 2tr((PX)"T)+
tr(TT 4(P1)T)),
e The aligned point setis T=7(Y, W)=Y + GW,
e The probability of correspondence is given by P.
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CPD algorithm notes

» Three parameters: w,A,f3
> Alternative minimization of 62and W, very few iterations needed

Speed

» Complexity O(NM + M3)per iteration - slow

» Fast Gauss transform to calculate matrix-vector products
> “multipole” type hierarchic approximation
> complexity O(M -+ N)

» Low-rank approximation to solve the linear equations

> factorization of G by eigendecomposition precomputed
> complexity O(M)
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Rigid 2D examples

U ‘
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Tteration 30 Iteration 40 Result (iteration 50)
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Rigid 3D example

Initialization  Tteration 10 Iteration 20 Iteration 30 Result (iteration 50)
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Non-rigid 2D example

Initialization Iteration 10 Iteration 20 Iteration 40  Result (iteration 50)
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Non-rigid 3D example

(@)

Initialization Result
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3D left ventricle matching

(b)

34/35



CPD summary

Relatively fast (seconds to minutes)

Rigid, affine, non-linear transformation.

Closed form rigid case

Can be applied to 2D, 3D, nD

Soft matching

Robust to outliers and missing points (explicit modeling)

Spatial coherence in the non-rigid case

vyVvyYvyvyVvyVvYyYyvyy

May fall to local minima
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