
1 Java 8 – 17 Features

1.1 Lambdas, Streams

Cycles Simplification
How to do make simpler?

List<LocalDate> myReports = new ArrayList<>();
for (Report r : reports) {

if (r.isActive()) {
if (r.getAuthor().equals(me)) {

myReports.add(r.getDueTo());
}

}
}
Collections.sort(myReports);

Nothing wrong, business as usual. Can we do it better?

Cycles Simplification
Is this better/more readable?

List<LocalDate> myReports = reports.stream()
.filter((Report r) -> r.isActive())
.filter((Report r) -> r.getAuthor().equals(me))
.map((Report r) -> r.getDueTo())
.sorted()
.toList();

...and we can continue...

Cycles Simplification
We can remove types...

List<LocalDate> myReports = reports.stream()
.filter(r -> r.isActive())
.filter(r -> r.getAuthor().equals(me))
.map(r -> r.getDueTo())
.sorted()
.toList();

...and we can continue...

Cycles Simplification
We can use method reference...

public static boolean isMyReport(Report r) {
return r.equals(me);

}

List<LocalDate> myReports = reports.stream()
.filter(Report::isActive)
.filter(TestFunctional::isMyReport)
.map(Report::getDueTo)
.sorted()
.toList();

...Let’s compare it on the next slide!

1



Figure 1: Stream processing visualization. Source: https://www.toptal.com/
java/why-you-need-to-upgrade-to-java-8-already

Cycles Simplification

Before

List<LocalDate> myReports = new ArrayList<>();
for (Report r : reports) {

if (r.isActive()) {
if (r.getAuthor().equals(me)) {

myReports.add(r.getDueTo());
} } }
Collections.sort(myReports);

After

List<LocalDate> myReports = reports.stream()
.filter(Report::isActive)
.filter(TestFunctional::isMyReport)
.map(Report::getDueTo)
.sorted()
.toList();

Stream

Lambda for Multithreaded Application
So far it was just a syntax sugar. BUT! How easily can you write multithreaded apps?

List<LocalDate> myReports = reports.stream()
.parallel() // run on multiple threads!
.filter(RemoteVerification::isValid) // calls outsite service
.toList();

2



1.2 Optional

Optional

Before

Report r = reports.get(0);
Band header = r.getHeaderBand();
if(header!=null) {

title = header.getTitle();
if(title==null) {

title = "Default Title";
}

}

After

String title = Optional.of(reports.get(0))
.map(Report::getHeaderBand)
.map(Band::getTitle)
.orElse("Default Title");

Log4j

Before – annoying

if(log.isDebugEnabled()) {
log.debug(prepareDataForLog());

}

Simple – useless overhead if not used

log.debug(prepareDataForLog());

Functional – simple and effective

log.debug(() -> prepareDataForLog());

Couple of Usefulness

Switch Expression

switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
case WEDNESDAY -> 9;
default -> throw new IllegalStateException("Invalid day: " + day);

}

Records aka Lombok

record Point(int x, int y) {}

3



...and Many Others

• Collectors.teeing,

• String.repeat(n) or Stream<String> lines()

• text block

• if(abj instanceof String str) {}

• JMH

• NullPointerException: a.b.c()

• shebang

• Vector API (Incubator)

• Foreign Function and Memory API (Incubator)

2 Agile World

Waterfall, Model V

• What’s wrong with waterfall, model V (e.g. detailed planning before programming)?
Everything!

– Detailed analysis becomes useless immediately after programming starts –
many assumptions are wrong.

– Detailed long-time planning is crazy – can you say, what you will do on
September 21st 2021 in the morning? And afternoon?

– Users tend to change their minds when they see the first version.

– Programming takes long time and situation changes.

– Studies have shown that in over 80 % of the investigated and failed soft-
ware projects, the usage of the Waterfall methodology was one of the key
factors of failure. https://www.scrum-institute.org/What_Makes_
Waterfall_Fail_in_Many_Ways.php

Agile Style of Work

• Principles (see agilemanifesto.org)

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

4



• Pair programming

• SCRUM or Canban

• Cooperation is much more important than individual success.

• Frequent and regular increments! Often are shared with customers.

2.1 Continuous Integration & Deployment

Continuous Integration

• After every commit, build is verified – including unit tests

• At least once a day, the whole product is deployed – including functional tests

• UI tests are done frequently (can take hours)

• . . . all automated.

• Quick detection of errors, cheaper fixes, fewer integration issues.

CI Tools

Version Control

• Git, others: CSV, Subversion, Bazaar, Mercurial, Bitkeeper, RTC. . .

CI Servers

• Jenkins

– Open-source, easy to setup,

– Highly configurable, lots of plugins.

• TeamCity

– Free for 3 agents and 20 build configurations,

– Developed by JetBrains,

– More suitable for enterprises – beast.

• Gitlab CI

• Today’s servers concentrate on whole process including deployment to cloud.

5



Static Code Analysis

• Analyze code structure or flows, don’t run it.

• Full-featured IDEs contain some sort of SCA.

• Checkstyle – checks just formatting.

• FindBugs – simple and pretty fast check, can find adding to String inside cycle,
impossible equals, bad null handling. . .

• Sonarqube – server-side analysis, long, discovers data flow from database to servlet
(e.g. finds XSS)

Sonarqube

2.2 12 Factor App

12 Factor App 1/2

• https://12factor.net/

• I. Codebase

– One codebase tracked in revision control, many deploys

• II. Dependencies

– Explicitly declare and isolate dependencies

• III. Config

– Store config in the environment

6



• IV. Backing services

– Treat backing services as attached resources

• V. Build, release, run

– Strictly separate build and run stages

• VI. Processes

– Execute the app as one or more stateless processes

12 Factor App 2/2

• VII. Port binding

– Export services via port binding

• VIII. Concurrency

– Scale out via the process model

• IX. Disposability

– Maximize robustness with fast startup and graceful shutdown

• X. Dev/prod parity

– Keep development, staging, and production as similar as possible

• XI. Logs

– Treat logs as event streams

• XII. Admin processes

– Run admin/management tasks as one-off processes

3 Application Monitoring and Administration

3.1 JMX

Java Management Extensions (JMX)

• Allow management of resources in an application,

• Standard part of the Java platform,

• Resources represented by Managed Beans (MBeans), registered in an MBean server,

• Accessible via JMX connectors.

Managed Beans

• Operations (MBean methods), through which the application can be managed,

• Attributes (getters/setters) for information/configuration.

7



Application Management via JMX

• Connect to application with JConsole,

• Locate the desired MBean,

– Invoke managed operations,

– View/configure attributes,

• MBean server set up in Spring – @EnableMBeanExport.

More Tools

JDK

• jmap – memory-related statistics about a VM, obsolete,

• jcmd – send diagnostic commands to JVM, internally used by the GUI tools,

• jstat – monitors JVM statistics, lots of options.

• Eclipse MAT – advanced memory analyzer,

• Java Mission Control and Java Flight Recorder – commercial JVM monitor-
ing tools by Oracle,

• StageMonitor, MoSKito etc. – open source alternatives.

• CA Wily – very famous and very detailed monitoring of JavaEE

8



4 Database Versioning

Database Versioning

• JPA provides a possibility to create missing tables

• . . . useless when table is changed

• Libraries: Liquibase and Flyway

• A list of changes is recorded, keeps current database version

• Application keeps steps to upgrade from one version to the next

• The most reliable way

• Alternatives: direct upgrades from older version (leads to multiple ways – hard
testing), creating SQL scripts (customers tend to make mistakes during deployment,
problematic error handling)

• Martin Fowler: Evolutionary Database Design

5 Production

Production Environments

• As usual – supported servers inside client’s network (Payara, Glassfish, TomEE,
WildFly, WebSphere)

• Hosted – our servers in server houses

• Currently investigating – Clouds, Docker

– Problem with acceptance in banks

– Cloud requires multitenancy application, e.g. there is a big risk of information
leak, very rare

– Docker seem a good choice, pack of all required software, needs just CPU,
memory, disk space, TCP/IP ports.

What We Actually Use

• Versioning: git, gitlab

• CI: Jenkins, investigating Gitlab CI

• Code analyzis: Findbugs

• IDE: NetBeans :-), Idea (In fact, this doesn’t matter.)

9



• Servers: Payara, TomEE, less Glassfish, WebSphere, WildFly

• Databases: PostgreSQL, MSSQL, Oracle

• Monitoring: JavaMelody

• OS: our systems – Linux, clients often Windows, recently Docker

The End

Thank You Petr Aubrecht petr@aubrecht.net

Resources

• R. Urma, M. Fusco and A. Mycroft: Java 8 in Action

• http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.
html

• https://martinfowler.com/articles/continuousIntegration.html

• https://www.martinfowler.com/articles/evodb.html

• http://docs.oracle.com/javase/tutorial/jmx/mbeans/index.html

• http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.
html

• https://github.com/javamelody/javamelody/wiki

10


