
Visibility Algorithms

Jiří Bittner

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(2)

Outline

◼ Points A,B visible ⇔ line segment AB does not intersect

opaque object

◼ Example: visibility from a view point

(4)

Visibility - Introduction

▪ Hidden surface removal

▪ Shadows

▪ Radiosity

▪ Ray Tracing

▪ Visibility culling

▪ Games / Multi-User Environments

▪ Streaming

(5)

Visibility in Computer Graphics

▪ Creating “correct” 2D image of 3D scene
- Finding visible objects and their visible parts

- Eliminating invisible objects and invisible parts

(6)

Hidden surface removal

ON

OFF

▪ Raster algorithms (image space)

- Solve visibility for pixels

- For each pixel

• Find nearest object projected to pixel

• Shade the pixel using object color

- Algorithms: z-buffer, ray casting, painters alg.

▪ Vector algorithms (object space)

- Vector based description of visibility

- For each object

• Find object parts not hidden by others

• Draw visible/invisible parts

- Algorithms: Naylor, Weiler-Atherton, Roberts

- CAD systems, technical drawings, special applications

(7)

Visibility algorithms

Complexity: O(P.N)

Complexity: O(N2)

P .. #pixels

N .. #objects

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(8)

Outline

▪ Ed Catmull – 1975
- Co-founder and president of Pixar

▪ Wolfgand Strasser - 1975

▪ For each pixel depth of the nearest object

▪ Process objects in arbitrary order
1. Rasterize to fragments

2. Compare depth of each fragment with z-bufer content

3. If closer overwrite z-buffer and pixel color

(9)

Depth buffer (Z-buffer)

▪ Two arrays: z_buffer, color_buffer

(10)

Depth buffer – pseudocode

Clear color_buffer;

Set z-buffer to “infinity”;

for (each object) {

for (each object pixel P[x,y]) {

if (z-buffer[x,y] > P[x,y].depth) {

z_buffer[x,y] = P[x,y]. depth;

color_buffer[x,y] = P[x,y].color;

}
}

}

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(11)

Outline

▪ Computing pixel depth - interpolation

▪ Linear interpolation of z’’ ~ 1/z (z’’ - device coordinates)

▪ For perspective projection depth resolution is non-uniform

- Nearer objects have higher depth resolution

▪ z-fighting when rendering farther objects

(12)

Depth buffer - details

world space NDC

▪ glFrustum(left,right,bottom,top,near,far)

(13)

Perspective projection - OpenGL

𝑀 =

2𝑛𝑒𝑎𝑟

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0

𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0

0
2𝑛𝑒𝑎𝑟

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚
0

0 0
𝑛𝑒𝑎𝑟 + 𝑓𝑎𝑟

𝑛𝑒𝑎𝑟 − 𝑓𝑎𝑟

2 𝑓𝑎𝑟 𝑛𝑒𝑎𝑟

𝑛𝑒𝑎𝑟 − 𝑓𝑎𝑟
0 0 −1 0

near

far

left right

bottom

top

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

[−1, −1, −1]

[1,1,1]

view/camera/eye coordinates clip coordinates / NDC

(14)

Perspective projection

𝑀 =

2𝑛𝑒𝑎𝑟

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0

𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0

0
2𝑛𝑒𝑎𝑟

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚
0

0 0
𝑛𝑒𝑎𝑟 + 𝑓𝑎𝑟

𝑛𝑒𝑎𝑟 − 𝑓𝑎𝑟

2 𝑓𝑎𝑟 𝑛𝑒𝑎𝑟

𝑛𝑒𝑎𝑟 − 𝑓𝑎𝑟
0 0 −1 0

𝑥′ =
2 near

left − right

x

z
−

𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡

𝑧′ =
𝑛𝑒𝑎𝑟 + 𝑓𝑎𝑟

𝑓𝑎𝑟 − 𝑛𝑒𝑎𝑟
+

2 𝑓𝑎𝑟 𝑛𝑒𝑎𝑟

𝑓𝑎𝑟 − 𝑛𝑒𝑎𝑟

1

𝑧

▪ Careful setting of near-far planes

- near = 1 / far = 10 : 50% between 1.0 a 1.8

- near = 0.01 / far = 10 : 90% between 0.01 – 0.1

- Median = 2*near*far/(near + far)

(15)

Depth distributions in z-buffer

16

Depth Precision Issues - Example

4bits

17

Depth Precision Issues - Example

5bits

▪ Careful settings of near(!) and far planes

▪ Rendering close and far objects

- Several passes, updating near/far

- combine using stencil

▪ W-buffer
- stores eye space z, linear depth distribution

- reciprocal of zi’ for each pixel

▪ Reverse z
- Lapidous and Jiao. Optimal depth buffer for low-cost graphics hardware. HWWS ’99.

- https://developer.nvidia.com/content/depth-precision-visualized

(18)

Resolving Z-fighting

▪ Use 1-z’ and floating point(!) depth buffer

▪ Reverse depth test (higher z is closer)

▪ Floats have higher resolution towards 0

19

Reverse Z

▪ LERP in screen space
- non linear in object space

(hyperbola) !

▪ Solution for color
- Compute c’=c/z and z’ = 1/z

- LERP of c’ and z’

- For each pixel ci = ci’/zi’

▪ The same for texture coordinates u, v (!)

▪ Note: OpenGL stores 1/z in w’ component after persp. divide
- Compute w’ = 1/z and c’=c*w’

- LERP of c’ and w’

- For each pixel ci = ci’/wi’ (20)

Perspectively correct interpolation

▪ Benefits
- Simplicity

- No preprocessing or sorting

- Easy parallelization and HW implementation

▪ Issues
- Pixel overdraw

- Mapping depth to z-buffer bit range

- Transparent objects

- Alias

21

Depth buffer - properties

(21)

▪ 10 polygons project to pixel in random order

▪ What is the average number of overdraws?

(22)

Quiz – number of overdraws

Source: Eric Haines - Subtle Tools

a) 3

b) 5.5

c) 7

▪ Front-to-back 1x, back-to-front 10x

▪ So the average is 5.5 overdraws

(23)

Intuitive answer

▪ The first polygon must cause overdraw: 1

▪ The second is either back or front

- Chance of overdraw: ½

▪ Third polygon

- 1/3 chance that it is the closest and causes overdraw

▪ Harmonic series: 1 + 1/2 + 1/3 + … + 1/10 = 2.9289

(24)

Correct answer

1 poly 1x

4 polys 2.08x

11 polys 3.02x

31 polys 4.03x

83 polys 5.00x

12,367 polys 10.00x

Aproximation for big N

overdraw(N) = ln(N) + 0.57721

(25)

Depth buffer in image pipeline

Transformation Clipping Projection

Rasterization + Visibility Shading

▪ glutInitDisplayMode (… | GLUT_DEPTH | …);

▪ glEnable(GL_DEPTH_TEST);

▪ glDepthFunc(GL_LESS);

▪ glClear(GL_DEPTH_BUFFER_BIT);

▪ glDepthMask(mask);
- GL_TRUE read/write

- GL_FALSE read only

(26)

Depth buffer in OpenGL

▪ Draw all non-transparent objects using z-buffer

▪ Sort all transparent objects back-to-front

▪ Render transparent objects with alfa-blending
- OpenGL:

• glDepthMask(GL_FALSE);

• glBlendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);

• glEnable(GL_BLEND);

▪ Depth peeling
- Iterative rendering layer by layer

- Additional depth check: if z(current_layer) >= z(prev_layer) -> cull

- Use “shadow test + alpha test” (Everitt 2001)

(27)

Depth buffer and transparent objects

▪ C=(r, g, b, 𝛼)

▪ 𝛼 opacity
- 𝛼 = 0 transparent

- 𝛼 = 1 opaque

(28)

Alpha blending – Over & Under operator

𝐶 = 𝛼𝑠𝐶𝑠 + 1 − 𝛼𝑠 𝐶𝑑

𝐶 = 𝛼𝑠(1 − 𝛼𝑑)𝐶𝑠 + 𝛼𝑑𝐶𝑑

𝛼 = 𝛼𝑠 1 − 𝛼𝑑 + 𝛼𝑑

s over d

s
d

s under d

▪ Should we draw back to front or front to back? And should we

care?

▪ How to increase depth resolution?

▪ When to perform the depth test?

▪ How to handle transparent objects?

(29)

Depth buffer – Questions

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(30)

Outline

▪ Cast ray for each image pixel [Appel68]

▪ Find the nearest intersection with scene object

▪ Complexity
- Naive: 𝑂(𝑅. 𝑁)

- With spatial data structure: 𝑂(𝑅. log 𝑁)

(31)

Ray casting

▪ Step 1: construct spatial DS
- Preprocessing

- BVH, kD-tree, octree, 3D grid

▪ Step 2: find the nearest

intersection
- Walk through cells intersected

by the ray

- Intersection found: terminate

(32)

Accelerated ray casting

▪ Implicit camera parameters
- MVP matrix inversion

▪ Explicit knowledge of camera parameters
- position (o), view direction (v), up vector (u), view angle (θ)

(33)

Ray Casting – Generating (Primary) Rays

1. Compute view coordinate system: a, s, t
2. Ray through pixel x, y (image size width x height):
ray_origin = o;
ray_dir = Normalize(a + x/width*s + y/height*t – o);

o

u

v
θ

t

s
a

▪ Benefits
- Flexibility (adaptive raster, ray tracing)

- Efficient culling of occluded objects

▪ Drawbacks
- Lower use of coherence

- Requires spatial DS

• Issue for dynamic scenes and HW implementation

(34)

Ray casting - properties

Scan-line

coherence

Requires

preprocessing

Efficient handling of

occluded objects

Z-buffer yes + no + no -

Ray casting no - yes - yes +

(35)

Z-buffer vs. Ray Casting

Z-buffer better for dynamic scenes with low occlusion

Ray casting better for complex highly occluded scenes

▪ Z-cull
- zmin,zmax for 8x8 pixel blocks

- If trizmin > tilezmax discard

▪ Early-z test (for each pixel)
- Apply z-test before shader execution

- On newer GPUs used by default

- Switched off when modifying “z” in shader

▪ HW occlusion queries, conditional rendering

(36)

Z-buffer GPU optimizations

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(37)

Outline

▪ Rendering back to front

▪ Farther patches overwritten by closer ones

▪ Used in 2D drawing tools (layers)

▪ In 3D without explicit ordering more complicated

▪ Depth sort algorithm [Newell72]

(38)

Painter’s algorithm

▪ Sort patches using zmax of each patch

▪ Farthest patch = candidate for rendering (P1)

▪ Series of tests to confirm the candidate using remaining patches

(39)

Depth Sort Painter’s algorithm

40

Depth Sort Painter’s algorithm – cont.

1. depth

overlap

z

projection plane xy

P2

P1
z1max

z1min

z2max

z2min

2. xy-projection

overlap

z

projection plane xy

P2 P1

3. P2 before P1
z

projection plane xy

P2

P1

4. P1 behind P2

z

projection plane xy

P2

P1

no overlap – render P1 no overlap –

next patch

YES – next patch YES – next patch

Tests failed: swap (P2 = new candidate)

▪ Can be detected using counter for candidate

▪ Solved by cutting the patch

(41)

Cycle of candidates

▪ Benefits
- No depth buffer needed

- Simplified version: easy implementation

▪ Issues
- Overdraw

- Correct depth order

- Self intersections of patches not allowed

(42)

Painter’s algorithm - properties

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(43)

Outline

▪ View independent sorting of the scene [Fuchs80]

▪ Two phases
- BSP tree construction (1x)

- Tree traversal and rendering (as painter’s alg.)

(44)

Binary Space Partitioning (BSP)

▪ Recursive splitting by planes

▪ Planes typically defined using scene polygons

(45)

BSP Tree Construction

void RenderBSP (Node S)

if (camera in front of S.plane) {

RenderBSP (S.back);

Render(S.polygons);

RenderBSP (S.front);
}

else {

RenderBSP (S.front);

Render(S.polygons);

RenderBSP (S.back);
}

}

(46)

Rendering with BSP tree

▪ Reduce number of overdraws

▪ Traverse front-to-back (reverse order compared to painter’s alg.)

▪ Alternatives to BSP tree
- kD tree, octree, BVH

(47)

BSP tree and Z-buffer

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(48)

Outline

▪ Recursive fast rectangle clipping tests

▪ Recursion terminates in pixel /subpixel

(49)

Image Subdivision – Warnock’s alg.

Divide and Conquer [Warnock69]

1. No object: background color

2. One object: render

3. More objects, one closest:

render closest

4. Recursively subdivide

1

2
3

4

▪ Sort primitives by scan lines (Y)

▪ Compute spans: intersections of primitives and scan lines

▪ Elementary spans: intersection of spans

▪ Sort elementary spans (X)

▪ Find the closest object for each elementary span (Z)

▪ [Watkins70]
- Bubble sort for X and Y

- O(log n) search for Z

(50)

Scan-line Algorithms

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(51)

Outline

▪ Eliminates ~ 50% polygons

▪ If d*n > 0 : cull

▪ In NDC: just check for sign of 𝑛𝑧
′

- Computed from transformed vertices (not shading normal)

▪ OpenGL:
glFrontFace(GL_CCW);

glCullFace(GL_FRONT);

glEnable(GL_CULL_FACE);

(52)

Back-face Culling

d

n
camera

▪ Specialized ray casting

▪ Intervals of ray/object intersections

▪ Solving set operations = set operations on intervals

(53)

Direct rendering of CSG models

A B

–C: C

A
B

viewport

A:

B:

C = A-B

▪ Graphs of functions z = (x,y)

▪ Terrains (height field)

▪ Algorithm outline
- Render front-to-back

- Keep bottom and top horizon

(54)

Floating horizon algorithm

top horizon

bottom horizon

New drawing

cut r2

cut r3

cut r1

▪ Antialiasing, correct transparency

- [Carpenter84], Lucasfilm: “The Road To Point Reyes”

- Later used in RenderMan (Pixar)

▪ Ordered list of primitives for each pixel

▪ Storing not just depth

- transparency, coverage, object ID, normal,…

▪ Polygon rasterization

- Non-transparent polygon covers the whole pixel – add to list and remove farther ones

- Transparent polygon or partial pixel coverage – insert to list, do not remove farther ones

(55)

A-Buffer

▪ Rendering pass
- For each pixel process the list front-to-back

- Composition (subpixel rasterization, coverage mask 4x4)

- Similar to MSAA

▪ Benefits
- More general than z-buffer

- Used in production rendering

- Handles transparency

(56)

A-Buffer

+

Loren Carpenter. 1984. The A -buffer, an antialiased hidden surface method. SIGGRAPH '84.

(57)

Other buffers…

A-buffer - Carpenter, 1984

G-buffer - Saito & Takahashi, 1991

M-buffer - Schneider & Rossignac, 1995

P-buffer - Yuan & Sun, 1997

T-buffer - Hsiung, Thibadeau & Wu, 1990

W-buffer - 3dfx, 1996?

Z-buffer - Catmull, 1973 (?)

ZZ-buffer - Salesin & Stolfi, 1989

Accumulation Buffer - Haeberli & Akeley, 1990

Area Sampling Buffer - Sung, 1992

Back Buffer - Baum, Cohen, Wallace & Greenberg,

1986

Close Objects Buffer - Telea & van Overveld, 1997

Color Buffer

Compositing Buffer - Lau & Wiseman, 1994

Cross Scan Buffer - Tanaka & Takahashi, 1994

Delta Z Buffer - Yamamoto, 1991

Depth Buffer - 1984

Depth-Interval Buffer - Rossignac & Wu, 1989

Double Buffer - 1993

Escape Buffer - Hepting & Hart, 1995

Frame Buffer - Kajiya, Sutherland & Cheadle, 1975

Hierarchical Z-Buffer - Greene, 1993

Item Buffer - Weghorst, Hooper & Greenberg, 1984

Light Buffer - Haines & Greenberg, 1986

Mesh Buffer - Deering, 1995

Normal Buffer - Curington, 1985

Picture Buffer - Ollis & Borgwardt, 1988

Pixel Buffer - Peachey, 1987

Ray Distribution Buffer - Shinya, 1994

Ray-Z-Buffer - Lamparter, Muller & Winckler,

1990

Refreshing Buffer - Basil, 1977

Sample Buffer - Ke & Change, 1993

Shadow Buffer - GIMP, 1999

Sheet Buffer - Mueller & Crawfis, 1998

Stencil Buffer - 1997?

Super Buffer - Gharachorloo & Pottle, 1985

Super-Plane Buffer - Zhou & Peng, 1992

Triple Buffer

Video Buffer - Scherson & Punte, 1987

Volume Buffer - Sramek & Kaufman, 1999

Source: Eric Haines - Is the Hardware Z-Buffer Doomed?

▪ Visibility in graphics MPG – chapter 11

▪ Depth Buffer

▪ Ray Casting

▪ Painter’s algorithm

▪ BSP Trees

▪ Warnock’s Algorithm

▪ Specialized Visibility Algorithms

(58)

Outline

Questions?

