

Sampling-Based Methods	Probabilistic Road Map (PRM)	Characteristics	Rapidly Exploring Random Tree (RRT) Sampling-Based Methods	Probabilistic Road Map (PRM)	Characteristics	Rapidly Exploring Random	n Tree (RRT)	
Probabilistic Roadr	naps			Incremental Sa	ampling and Searching				
A discrete representa	ation of the continuous \mathcal{C}	-space generated	by randomly sampled						
configurations in \mathcal{C}_{free}	, that are connected into a	graph.		 Single query 	 Single query sampling-based algorithms incrementally create a search graph (roadmap). 				
Nodes of the grap	oh represent admissible con	figurations of the	robot.		 Initialization - G(V, E) an undirected search graph, V may contain q_{start}, q_{goal} and/or other points in C_{free}. Werter coloridation and the search of the				
Edges represent a	feasible path (trajectory)	between the partic	ular configurations.						
Probabilistic complete algorithms: with an increasing number of samples, an admissible solution would be found (if exists).				3. Local p	 Vertex selection method – choose a vertex q_{cur} ∈ V for the expansion. Local planning method – for some q_{new} ∈ C_{free}, attempt to construct a path τ : [0,1] → C_{free} such that τ(0) = q_{cur} and τ(1) = q_{new}, τ must be checked to ensure it is collision free 				
			λ		is not a collision-free, go to Step 2)			
				4. Insert a q _{new} to	 4. Insert an edge in the graph – Insert τ into E as an edge from q_{cur} to q_{new} and insert q_{new} to V if q_{new} ∉ V. How to test q_{new} is in V? 5. Check for a solution – Determine if G encodes a solution, e.g., using a single search tree or graph search technique. 6. Repeat Step 2 – iterate unless a solution has been found or a termination condition is 				
				or graph 6. Repeat					
Having	g the graph, the final path (traject	ory) can be found by a	graph search technique.	satisfied		. M.: Planning Algori	thms (2006), Chapter 5.	4	
Jan Faigl, 2020		ture 08: Sampling-based Mo		6 / 71 Jan Faigl, 2020	B4M36UIR -	Lecture 08: Sampling-based	Motion Planning	7 / 71	
Sampling-Based Methods	Probabilistic Road Map (PRM)	Characteristics	Rapidly Exploring Random Tree (Probabilistic Road Map (PRM)	Characteristics	Rapidly Exploring Random	,	
Probabilistic Roadr	map Strategies			Multi-Query S	trategy				
Multi-Query strate	egy is roadmap based.			Build a roadma	p (graph) representing the env	vironment.			
Generate a single i	roadmap that is then used	for repeated plann	iing queries.	1. Learning pha	ise				
-	technique is Probabilistic				1.1 Sample <i>n</i> points in C_{free} .				
Ka	vraki, L., Svestka, P., Latombe, JC., C	Overmars, M. H.B: Probabil	istic Roadmaps for Path Planning in	1.2 Connect	 1.2 Connect the random configurations using a local planner. 2. Query phase 				
Hie	gh Dimensional Configuration Spaces, IEE	E Transactions on Robotics,	12(4):566–580, 1996.						
Single-Query strategy is an incremental approach.				2.1 Connect	2.1 Connect start and goal configurations with the PRM.				
 For each planning problem, it constructs a new roadmap to characterize the subspace of C-space that is relevant to the problem. 				2.2 Use the	<i>E.g., using a local planner.</i> 2.2 Use the graph search to find the path.				
Rapidly-exploring Random Tree – RRT;LaValle, 1998Expansive-Space Tree – EST;Hsu et al., 1997			Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars,						
Sampling-base	d Roadmap of Trees – SRT.			IEEE Transaction	s on Robotics and Automation, 12(4):	566–580, 1996.			
	A combinat	tion of multiple–query a	and single-query approaches. Plaku et al., 2005	<u>N</u>	First planner that demonstrates a dimensions.	bility to solve general pla	anning problems in more tha	an 4-5	
Jan Faigl, 2020	B4M36UIR – Lec	ture 08: Sampling-based Mo	otion Planning	8 / 71 Jan Faigl, 2020	B4M36UIR –	Lecture 08: Sampling-based	Motion Planning	10 / 71	
4									

Sampling-Based Methods Probab	ilistic Road Map (PRM) Characteristics	Rapidly Exploring Random Tree (RRT)	Sampling-Based Methods Prob	babilistic Road Map (PRM)	Characteristics	Rapidly Exploring Random Tree (RRT)
PRM Construction	Characteristics	Rapidly Exploring Random Tree (RRT)	Practical PRM	Dabilistic Road Map (FRM)	Characteristics	
PRIVI CONStruction						
#1 Given problem domain		#3 Connecting samples #6 Final found path	 Incremental construction Connect nodes in a radiu Local planner tests collist lected resolution δ. Path can be found by 1 rithm. 	is $ ho.$ isions up to se-	of the PRM algor	Cobs Cobs Cobs Cobs
					We need	a couple of more formalisms.
Jan Faigl, 2020 Sampling-Based Methods Probab	B4M36UIR – Lecture 08: Sampling-base silistic Road Map (PRM) Characteristics	Ad Motion Planning 11 / 71 Rapidly Exploring Random Tree (RRT)	Jan Faigl, 2020 Sampling-Based Methods Prob	B4M36UIR – babilistic Road Map (PRM)	Lecture 08: Sampling-based M Characteristics	Action Planning 12 / 71 Rapidly Exploring Random Tree (RRT)
Path Planning Problem	Formulation		Path Planning Probler	m		
 Path planning problem i C_{free} = cl(C \ C_{obs}), C = q_{init} ∈ C_{free} is the initia Q_{goal} is the goal region 	 Feasible path planning For a path planning problem (C_{free}, q_{init}, Q_{goal}): Find a feasible path π : [0, 1] → C_{free} such that π(0) = q_{init} and π(1) ∈ cl(Q_{goal}), if such path exists; Report failure if no such path exists. 					
	^d of <i>bounded variation</i> is called:					
 path if it is continuous; collision-free path if it is a path and \$\pi(\tau) \in \mathcal{C}_{free}\$ for \$\tau \in [0,1]\$; feasible if it is a collision-free path, and \$\pi(0) = q_{init}\$ and \$\pi(1) \in \mathcal{C}_{goal}\$). 			• Optimal path planning The optimality problem asks for a feasible path with the minimum cost. For $(C_{free}, q_{init}, Q_{goal})$ and a cost function $c : \Sigma \to \mathbb{R}_{\geq 0}$:			
 A function π with the total variation TV(π) < ∞ is said to have bounded variation, where TV(π) is the total variation TV(π) = sup_{n∈ℕ,0=τ₀<τ₁<<τn=s} ∑_{i=1}ⁿ π(τ_i) - π(τ_{i-1}) . 			 Find a feasible path π* such that c(π*) = min{c(π) : π is feasible}; Report failure if no such path exists. The cost function is assumed to be monotonic and bounded, i.e., there exists 			
 The total variation TV(π) is 				k_c such that $c(\pi) \leq k$	$c_c \operatorname{TV}(\pi).$	N-RE
Jan Faigl, 2020	B4M36UIR – Lecture 08: Sampling-base		Jan Faigl, 2020	B4M36UIR –	Lecture 08: Sampling-based N	Notion Planning 15 / 71

It is applicable with a robust optimal solution that can be obtained as a limit of robust An algorithm \mathcal{ALG} is asymptotically optimal if, for any path planning problem $\mathcal{P} =$ (non-optimal) solutions. $(\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ and cost function c that admit a robust optimal solution with the • A collision-free path π^* is robustly optimal solution if it has weak δ -clearance and for finite cost c^* any sequence of collision free paths $\{\pi_n\}_{n\in\mathbb{N}}, \pi_n\in\mathcal{C}_{free}$ such that $\lim_{n\to\infty}\pi_n=\pi^*$, $Pr\left(\left\{\lim_{i\to\infty}Y_i^{\mathcal{ALG}}=c^*\right\}\right)=1.$ $\lim_{n\to\infty}c(\pi_n)=c(\pi^*).$ • Y_i^{ALG} is the extended random variable corresponding to the minimum-cost solution There exists a path with strong δ -clearance, and π^* is homotopic to such path and π^* is of the lower cost. included in the graph returned by \mathcal{ALG} at the end of the iteration *i*. • Weak δ -clearance implies a robustly feasible solution problem. Thus, it implies the probabilistic completeness. N.S. B4M36UIR - Lecture 08: Sampling-based Motion Planning B4M36UIR - Lecture 08: Sampling-based Motion Planning Jan Faigl, 2020 20 / 71 Jan Faigl, 2020 21 / 7Sampling-Based Methods Characteristics Rapidly Exploring Random Tree (RRT) Sampling-Based Methods Characteristics Rapidly Exploring Random Tree (RRT Properties of the PRM Algorithm PRM vs simplified PRM (sPRM) Algorithm 1: PRM Algorithm 2: sPRM **Input**: q_{init} , number of samples *n*, radius ρ **Input**: q_{init} , number of samples *n*, radius ρ **Output:** PRM – G = (V, E)**Output**: PRM - G = (V, E) $V \leftarrow \emptyset : E \leftarrow \emptyset$: $V \leftarrow \{q_{init}\} \cup \{\mathsf{SampleFree}_i\}_{i=1,\ldots,n-1}; E \leftarrow \emptyset;$ Completeness for the standard PRM has not been provided when it was introduced. foreach $v \in V$ do for i = 0, ..., n do $q_{rand} \leftarrow \mathsf{SampleFree};$ $U \leftarrow \mathsf{Near}(G = (V, E), v, \rho) \setminus \{v\};$ A simplified version of the PRM (called sPRM) has been most studied. $U \leftarrow \text{Near}(G = (V, E), q_{rand}, \rho);$ foreach $u \in U$ do $V \leftarrow V \cup \{q_{rand}\};$ if CollisionFree(v, u) then sPRM is probabilistically complete. foreach $u \in U$ with increasing $||u - q_r||$ do $E \leftarrow E \cup \{(v, u), (u, v)\};$ if q_{rand} and u are not in the same connected component of G = (V, E) then What are the differences between PRM and sPRM? return G = (V, E); if CollisionFree(q_{rand}, u) then $E \leftarrow E \cup \{(q_{rand}, u), (u, q_{rand})\};$ Connections between vertices in the same connected component are allowed. return G = (V, E); There are several ways for the set U of vertices to connect them: k-nearest neighbors to v;

Jan Faigl, 2020

Jan Faigl, 2020

22 / 71

B4M36UIR - Lecture 08: Sampling-based Motion Planning

23 / 71

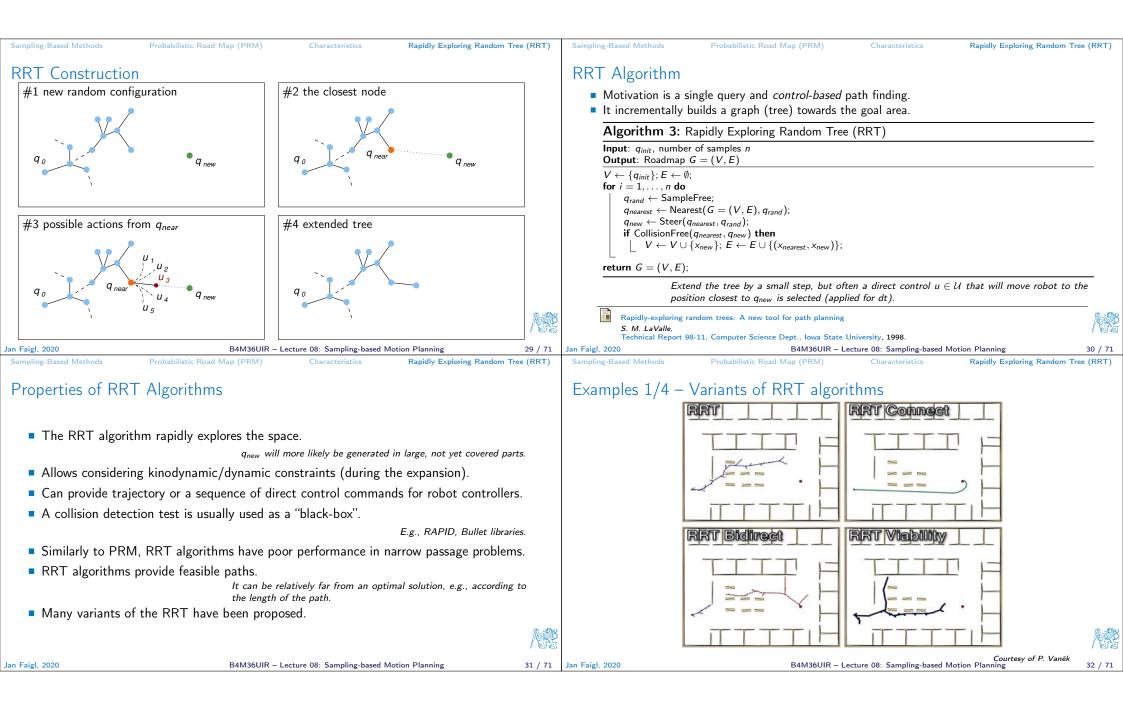
Probabilistic Road Map (PRM)

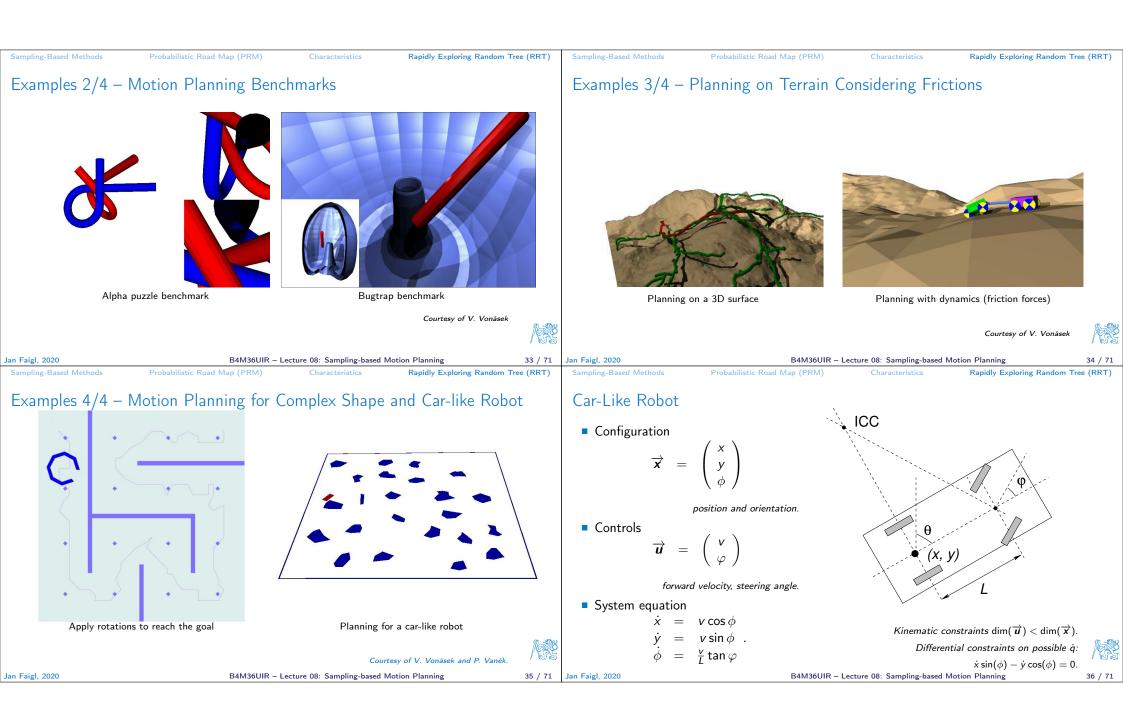
Asymptotic Optimality 4/4

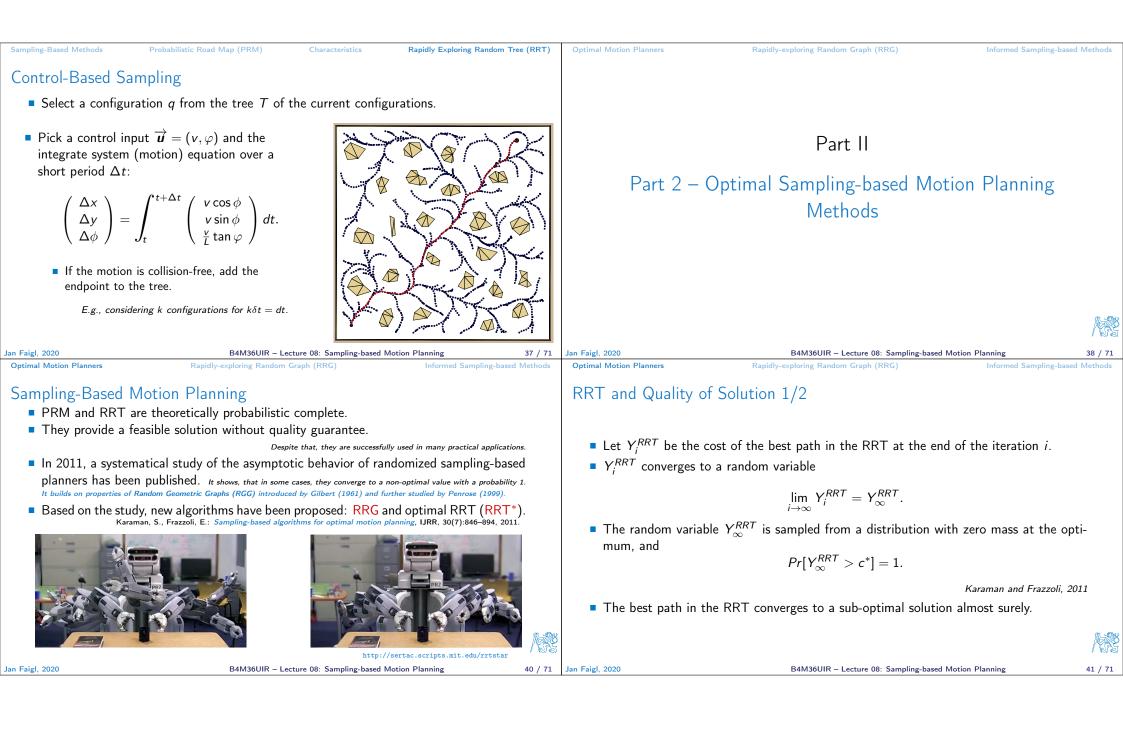
Asymptotically optimal algorithm

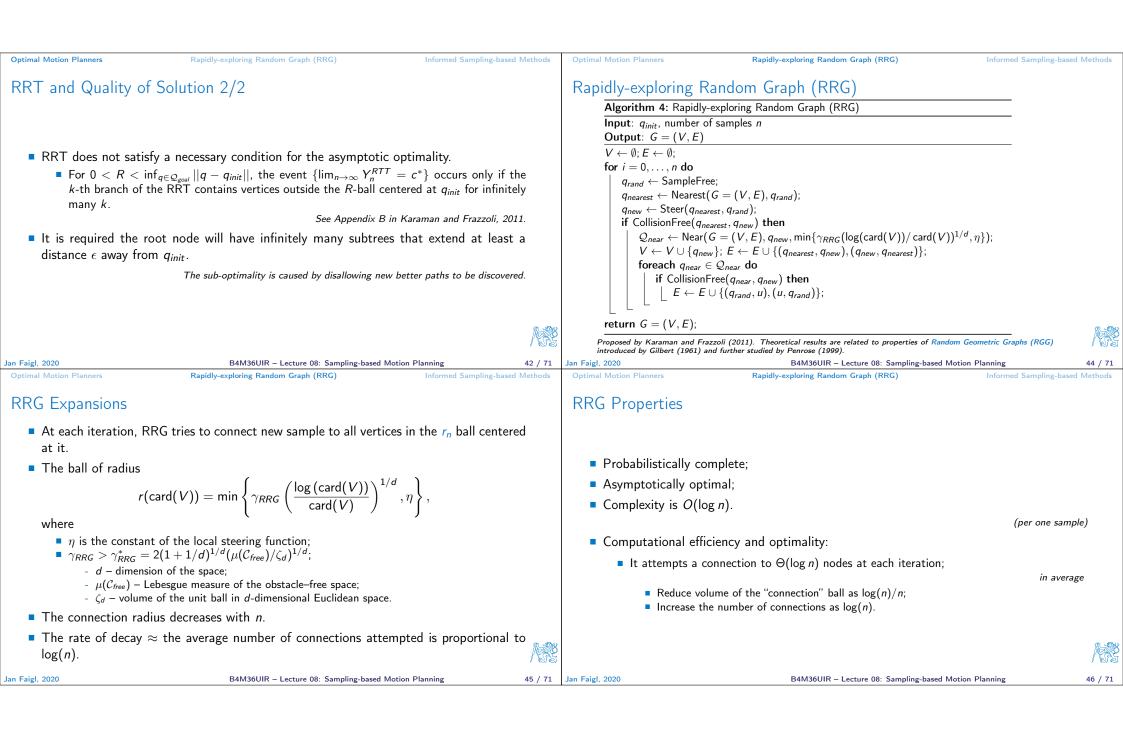
Characteristics

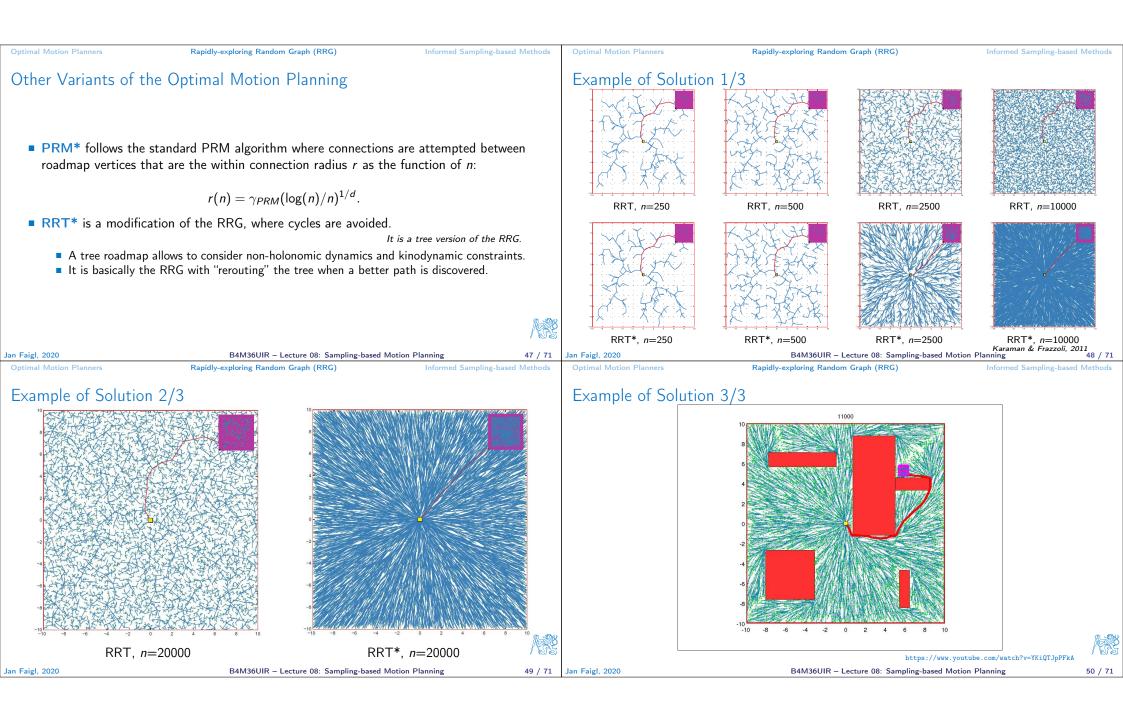
Rapidly Exploring Random Tree (RRT) Sampling-Based Methods

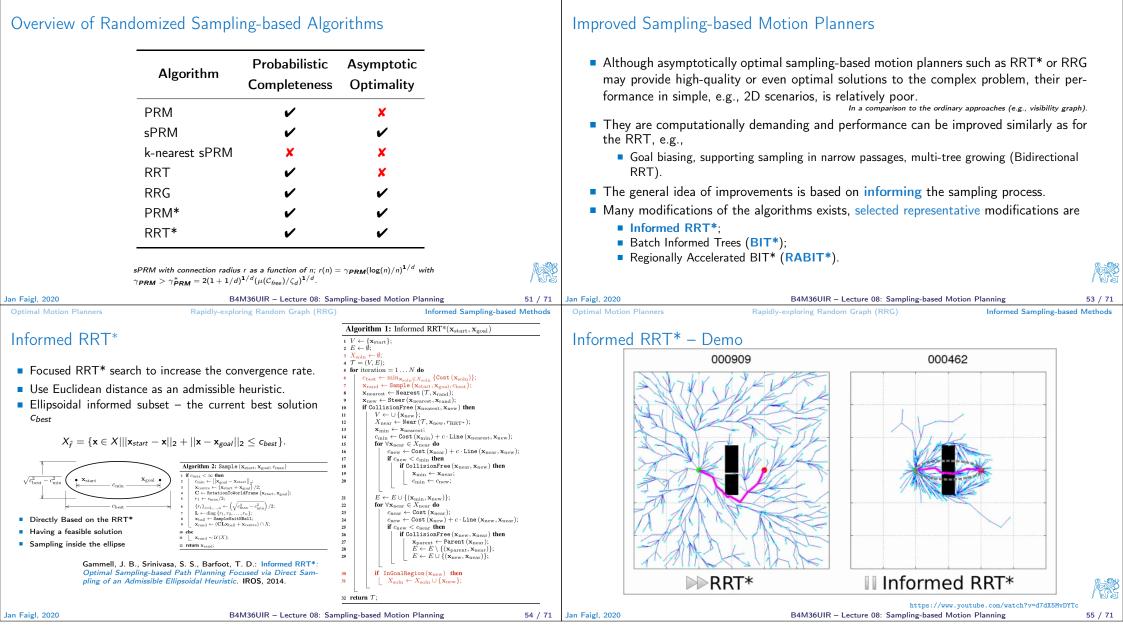

Asymptotic Optimality 3/4 **Robust Optimal Solution**

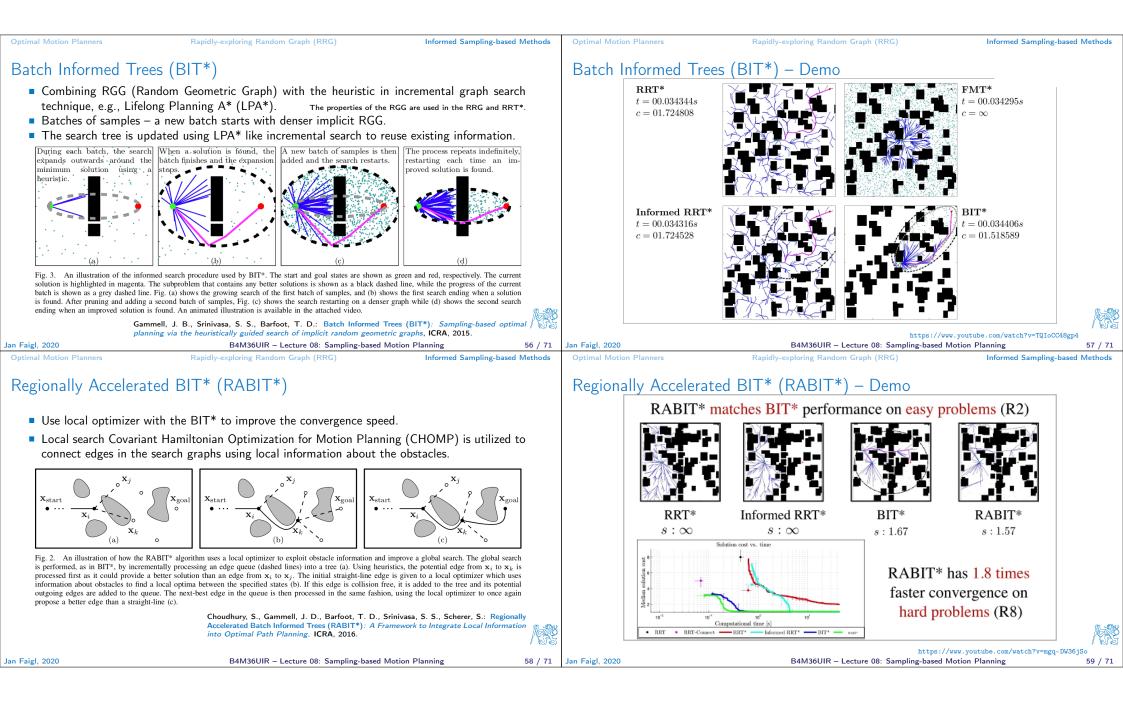

Probabilistic Road Map (PRM)

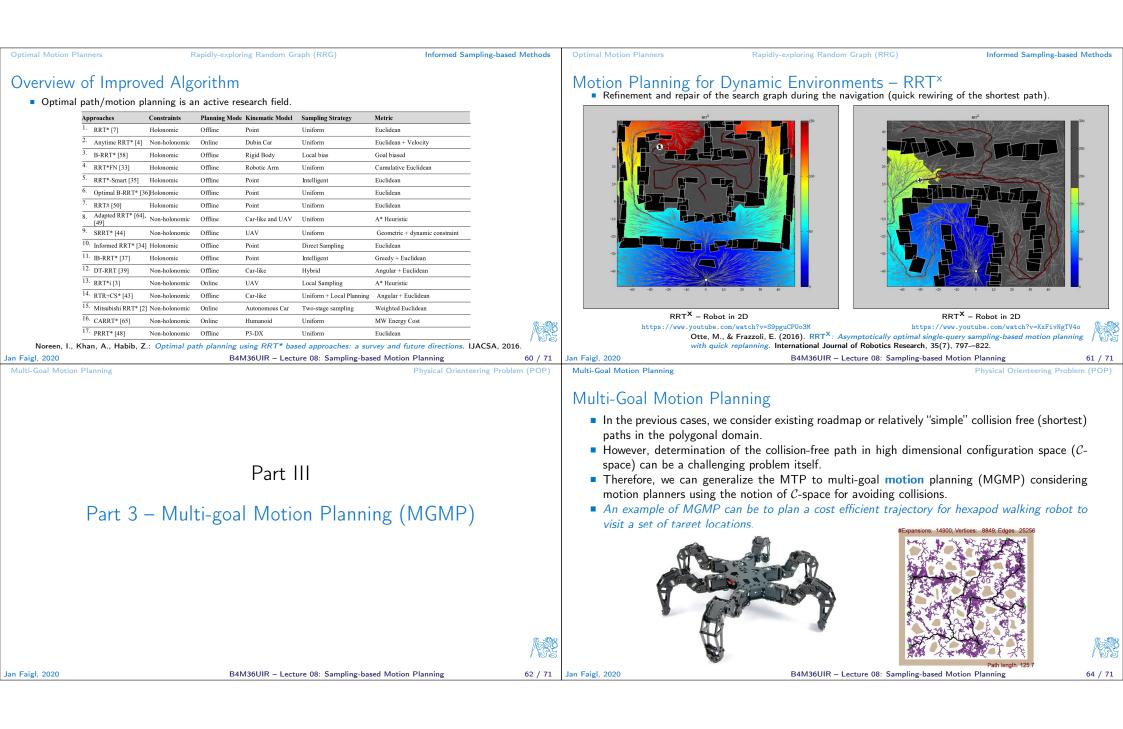

Characteristics


Sampling-Based Methods


Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)				
PRM – Properties	Comments about Random Sampling 1/2				
sPRM (simplified PRM):	 Different sampling strategies (distributions) may be applied. 				
 Probabilistically complete and asymptotically optimal. Processing complexity can be bounded by O(n²). Query complexity can be bounded by O(n²). Space complexity can be bounded by O(n²). Heuristics practically used are usually not probabilistic complete. k-nearest sPRM is not probabilistically complete. Variable radius sPRM is not probabilistically complete. See Karaman and Frazzoli: Sampling-based Algorithms for Optimal Motion Planning, IJRR 2011. PRM algorithm + It has very simple implementation. 	 Notice, one of the main issues of the randomized sampling-based approaches is the 				
 + It provides completeness (for sPRM). - Differential constraints (car-like vehicles) are not straightforward. 	narrow passage.				
- Differential constraints (car-like venicles) are not straightforward.	Several modifications of sampling-based strategies have been proposed in the last decades.				
Jan Faigl, 2020 B4M36UIR – Lecture 08: Sampling-based Motion Planning 24 / 71 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Jan Faigl, 2020 B4M36UIR – Lecture 08: Sampling-based Motion Planning 25 / 71 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)				
Comments about Random Sampling 2/2	Rapidly Exploring Random Tree (RRT)				
A solution can be found using only a few samples.					
Do you know the Oraculum? (from Alice in Wonderland) Sampling strategies are important: Near obstacles; Narrow passages; Grid-based; Uniform sampling must be carefully considered. James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning, ICRA, 2004.	 Single-Query algorithm It incrementally builds a graph (tree) towards the goal area. <i>It does not guarantee precise path to the goal configuration.</i> Start with the initial configuration q₀, which is a root of the constructed graph (tree). 				
and the second se	2. Generate a new random configuration q_{new} in C_{free} .				
	3. Find the closest node q_{near} to q_{new} in the tree. E.g., using KD-tree implementation like ANN or FLANN libraries.				
	4. Extend q_{near} towards q_{new} . Extend the tree by a small step, but often a direct control $u \in U$ that will move robot the position closest to q_{new} is selected (applied for δt).				
いたい ひょう ちょう しょう しょう しょう しょう しょう しょう しょう しょう	5. Go to Step 2 until the tree is within a sufficient distance from the goal configuration.				
	Or terminates after dedicated running time.				
Naïve samplingUniform sampling of SO(3) using Euler anglesJan Faigl, 2020B4M36UIR – Lecture 08: Sampling-based Motion Planning26 / 71	Jan Faigl, 2020 B4M36UIR – Lecture 08: Sampling-based Motion Planning 28 / 71				




Optimal Motion Planners


Rapidly-exploring Random Graph (RRG)

Informed Sampling-based Methods

thods Optimal Motion Planners

Informed Sampling-based Methods

Multi-Goal Motion Planning

Physical Orienteering Problem (POP)

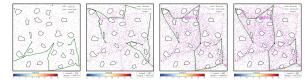
Problem Statement – MGMP Problem

- The working environment $\mathcal{W} \subset \mathbb{R}^3$ is represented as a set of obstacles $\mathcal{O} \subset \mathcal{W}$ and the robot configuration space \mathcal{C} describes all possible configurations of the robot in \mathcal{W} .
- For q ∈ C, the robot body A(q) at q is collision free if A(q) ∩ O = Ø and all collision free configurations are denoted as C_{free}.
- Set of *n* goal locations is $\mathcal{G} = (g_1, \ldots, g_n)$, $g_i \in \mathcal{C}_{free}$.
- Collision free path from q_{start} to q_{goal} is $\kappa : [0,1] \rightarrow C_{free}$ with $\kappa(0) = q_{start}$ and $d(\kappa(1), q_{end}) < \epsilon$, for an admissible distance ϵ .
- Multi-goal path τ is admissible if $\tau : [0, 1] \to C_{free}$, $\tau(0) = \tau(1)$ and there are *n* points such that $0 \le t_1 \le t_2 \le \ldots \le t_n$, $d(\tau(t_i), v_i) < \epsilon$, and $\bigcup_{1 \le i \le n} v_i = \mathcal{G}$.
- The problem is to find the path τ^* for a cost function c such that $c(\tau^*) = \min\{c(\tau) \mid \tau \text{ is admissible multi-goal path}\}.$

MGMP – Existing Approches

- Determining all paths connecting any two locations $g_i, g_j \in \mathcal{G}$ is usually very computationally demanding.
- Considering Euclidean distance as an approximation in the solution of the TSP as the Minimum Spanning Tree (MST) – Edges in the MST are iteratively refined using optimal motion planner until all edges represent a feasible solution.
 Saha, M., Roughgarden, T., Latombe, J.-C., Sánchez-Ante, G.: Planning Tours of Robotic Arms among Partitioned Goals., International Journal of Robotics Research, 5(3):207–223, 2006
- Synergistic Combination of Layers of Planning (SyCLoP) A combination of route and trajectory planning. Plaku, E., Kavraki, L.E., Vardi, M.Y. (2010): Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning, IEEE Transactions on Robotics, 26(3):469–482, 2010.
- Steering RRG roadmap expansion by unsupervised learning for the TSP.
- Steering PRM* expansion using VNS-based routing planning in the Physical Orienteering Problem (POP).

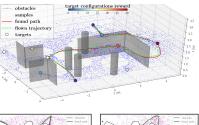
 Jan Faigl, 2020
 B4M36UIR – Lecture 08: Sampling-based Motion Planning
 65 / 71
 Jan Faigl, 2020
 B4M36UIR – Lecture 08: Sampling-based Motion Planning
 66 / 72

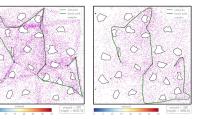

 Multi-Goal Motion Planning
 Physical Orienteering Problem (POP)
 Multi-Goal Motion Planning
 Physical Orienteering Problem (POP)
 Physical Orienteering Problem (POP)

Jan Faigl, 2020

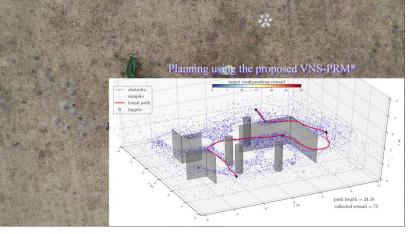
68 / 71

Multi-Goal Trajectory Planning with Limited Travel Budget Physical Orienteering Problem (POP)


- Orienteering Problem (OP) in an environment with obstacles and motion constraints of the data collecting vehicle.
- A combination of motion planning and routing problem with profits.
- VNS-PRM* VNS-based routing and motion planning is addressed by PRM*.
- An initial low-dense roadmap is continuously expanded during the VNS-based POP optimization to shorten paths of promising solutions.
- Shorten trajectories allow visiting more locations within T_{max}.



 Pěnička, Faigl and Saska: Physical Orienteering Problem for Unmanned Aerial Vehicle Data Collection Planning in Environments with Obstacles. IEEE Robotics and Automation Letters 4(3):3005–3012, 2019.


Jan Faigl, 2020

B4M36UIR - Lecture 08: Sampling-based Motion Planning

Multi-Goal Trajectory Planning with Limited Travel Budget Physical Orienteering Problem (POP) – Real Experimental Verification

B4M36UIR - Lecture 08: Sampling-based Motion Planning

Topics Discussed			Topics Discussed	
			Topics Discussed – Randomized Sampling-based Methods	
			 Single and multi-query approaches Probabilistic Roadmap Method (PRM); Rapidly Exploring Random Tree (RRT) 	
			 Optimal sampling-based planning – Rapidly-exploring Random Graph (RRG) 	
	Summary of the Lecture		 Properties of the sampling-based motion planning algorithms Path, collision-free path, feasible path Feasible path planning and optimal path planning Probabilistic completeness, strong δ-clearance, robustly feasible path planning problem Asymptotic optimality, homotopy, weak δ-clearance, robust optimal solution PRM, RRT, RRG, PRM*, RRT* 	
			 Improved randomized sampling-based methods Informed sampling – Informed RRT*; Improving by batches of samples and reusing previous searches using Lifelong Planning A* (LPA*) Improving local search strategy to improve convergence speed Planning in dynamic environments – RRT^X 	
			 Multi-goal motion planning (MGMP) problems are further variants of the robotic TSP 	
		N.S.S.	Next: Game Theory in Robotics	<u>A</u>
Jan Faigl, 2020	B4M36UIR – Lecture 08: Sampling-based Motion Planning	70 / 71	Jan Faigl, 2020 B4M36UIR – Lecture 08: Sampling-based Motion Planning 71	1 / 71