Cluster analysis - advanced and special algorithms

Jiří Kléma
Department of Computer Science, Czech Technical University in Prague

http://cw.felk.cvut.cz/wiki/courses/b4m36san/start

Comparison: \mathbf{k}-means and hierarchical single-link

- single linkage tends to generate longer non-compact clusters,
- k-means makes compact clusters, complete linkage is outlier sensitive,

k-means intuitively correct

k-means	Single-link

single linkage intuitively correct

Carnegie Mellon University, course: Statistics 36-350: Data Mining

Spectral clustering - motivation

- clustering algorithms assume certain cluster shapes
- unexpected shapes cause difficulties (eg. linearly non-separable clusters),
- "classical pairwise similarity" can be insufficient.

K-means application

Single linkage application
R, kernlab package, specc function demo

Spectral clustering - context

- frequent solution is a feature space transformation,
- a domain independent clustering algorithm, the transformation tuned for the domain
- explicit transformation
* get the object coordinates in the new feature space,
* traditional clustering in the new space,
* illustrative, but impractical,
- implicit transformation
* via similarity resp. kernel function $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$,
* purely a function of object pairs, no object coordinates in the new space,
* very natural for clustering, similarity/distance its essential part anyway,
* kernel trick analogy (SVM classification),
- kernel k-means (see the next slide),
* an implicit high-dimensional space, clusters (classes) potentially easily separable,
* kernel PCA - kernel matrix \rightarrow diagonalize \rightarrow a low-dimensional feature space.

Kernel k-means

- apply k-means in the transformed feature space induced by a kernel function
- the original objects: $x_{1}, x_{2}, \ldots, x_{m}$,
- the transformed objects: $\Phi\left(x_{1}\right), \Phi\left(x_{2}\right), \ldots, \Phi\left(x_{m}\right)$ (not explicitly calculated),
- the kernel function: $k\left(x_{i}, x_{j}\right)=\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle$,
- cluster centers in the transformed space: $\mu_{v}=\frac{1}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} \Phi\left(x_{i}\right)$ (not explicitly known),
- only (squared) distances between objects and cluster centers need to be known:

$$
\begin{aligned}
\left\|\Phi(x)-\mu_{v}\right\|^{2} & =\left\|\Phi(x)-\frac{1}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} \Phi\left(x_{i}\right)\right\|^{2}= \\
& =\left\langle\Phi(x)-\frac{1}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} \Phi\left(x_{i}\right), \Phi(x)-\frac{1}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} \Phi\left(x_{i}\right)\right\rangle= \\
& =\langle\Phi(x), \Phi(x)\rangle-\frac{2}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}}\left\langle\Phi(x), \Phi\left(x_{i}\right)\right\rangle+\frac{1}{\left|C_{v}\right|^{2}} \sum_{x_{i} \in C_{v}, x_{j} \in C_{v}}\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle= \\
& =k(x, x)-\frac{2}{\left|C_{v}\right|} \sum_{x_{i} \in C_{v}} k\left(x, x_{i}\right)+\frac{1}{\left|C_{v}\right|^{2}} \sum_{x_{i} \in C_{v}, x_{j} \in C_{v}} k\left(x_{i}, x_{j}\right)
\end{aligned}
$$

Example: spirals - connectivity kernel, Gaussian kernel

- connectivity kernel
- the object pair distance given by the max edge on the path connecting the objects,
- if there are more paths, the one minimizing the criterion above is taken,
- e.g., this kernel makes k-means behave similar to single linkage hierarchical clustering,

Fischer et al.: Clustering with the Connectivity Kernel

- Gaussian (RBF) kernel
$-s\left(x_{i}, x_{j}\right)=\exp \left(-\left\|x_{i}-x_{j}\right\| / \sigma^{2}\right)$,
- σ set to have a "tight" object neighborhood,
- an implicit feature space (infinite dimension).

Famous statistical blunders ...

US presidential elections, 1936
FD Roosevelt - Alf Landon

Draft lottery, 1970
Vietnam war

Financial crisis, 2008
Gaussian copula function

Spectral clustering in a nutshell

- input: a set of objects,

○

- described as a graph,
- edges encode similarity,
- graph decomposed into components = clusters,
- graph partitioned by its spectral properties.

Azran: A Tutorial on Spectral Clustering

Graph theory - basic terms

- vertex (object) similarity (affinity)

$$
-s_{u v}=\langle u, v\rangle
$$

- vertex degree (volume), degree matrix
$-d_{u}=\sum_{v=1}^{m} s_{u v}$,

$-\mathcal{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right)$,
- size and degree of a vertex set (cluster)
$-|A| \ldots$ the number of vertices in A,
$-\operatorname{vol}(A)=\sum_{u \in A} d_{u}$,
- an edge cut between two components
$-\operatorname{cut}(A, B)=\sum_{u \in A} \sum_{v \in B} s_{u v}$.

Azran: A Tutorial on Spectral Clustering

Spectral clustering as an approximated minimum graph cut

- clustering \sim partition the similarity graph into components,
- can be solved as an optimization problem
- search for a minimum edge cut in the similarity graph \mathcal{S} to make it disconnected * $\min _{A \subset S} \operatorname{cut}(A, \bar{A})$,
* a computationally feasible problem, but rather unsatisfactory partitions,

mincut, incorrect

RatioCut, Ncut, correct

- a "reasonable" size of the components needs to be required
* minimize one of the balanced cut criteria,
* RatioCut $(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{|A|}+\frac{1}{|B|}\right)$,
* $\operatorname{Ncut}(A, B)=\operatorname{cut}(A, B)\left(\frac{1}{\operatorname{vol}(A)}+\frac{1}{\operatorname{vol}(B)}\right)$,
* the dark side of the coin: NP-hard problems,
- spectral clustering provides a relaxed and feasible solution to the balanced cut problem.

Spectral clustering - algorithm

- inputs: $\mathcal{X}=\left[x_{i j}\right]_{m \times n}=\left\{x_{1}, \ldots, x_{m}\right\} \subset \mathbb{R}^{n}, k$

1. select the similarity function

- linear, RBF, polynomial, etc.
- a general rule assigning functions to problems does not exist,

2. compute the similarity (adjacency) matrix $\mathcal{S}=\left[s_{i j}\right]_{m \times m}$

- (a new implicit feature space originates),

3. construct a "reasonable" similarity graph by editing \mathcal{S}
$-\mathcal{S}$ is a complete graph, vertices \sim objects, similarities \sim edges,

- remove long (improper) edges,

4. derive the Laplace matrix \mathcal{L} out of the similarity matrix \mathcal{S}

- unnormalized: $\mathcal{L}=\mathcal{D}-\mathcal{S}$,
- normalized: $\mathcal{L}_{r w}=\mathcal{D}^{-1} \mathcal{L}=\mathcal{I}-\mathcal{D}^{-1} \mathcal{S}$,

5. project into an explicit space of k first eigenvectors of \mathcal{L},
$-\mathcal{V}=\left[v_{i j}\right]_{m \times k}$, eigenvectors of \mathcal{L} as columns,
6. k-means clustering in \mathcal{V} matrix
$-\mathcal{V}$ rows interpreted as new object positions in k-dimensional space.

Spectral clustering - similarity graph

- reduce the complete graph to an undirected graph concerning local neighborhoods,
- vertices shall have a reasonable degree $(\ll m)$,
- basic approaches
$-\epsilon$-neighborhood
$* s_{i j}>\epsilon \rightarrow$ vertices i and j connected by an edge, otherwise $s_{i j}=0$,
- k-nearest neighbors
* symmetric: connect i and j if i belongs to k nearest neighbors of j or vice versa,
* mutual: connect i and j if i belongs to k nearest neighbors of j and vice versa,
- keep the complete graph
* usually with the RBF or other strictly local kernel.

Euclidean similarity, 3 nearest neighbors (var sym)

RBF kernel, too small ϵ

RBF kernel, a suitable ϵ

Spectral clustering - graph Laplacian

- concern the unnormalized option: $\mathcal{L}=\mathcal{D}-\mathcal{S}$
- then for $\forall f \in \mathbb{R}^{m}$

$$
\begin{aligned}
f^{\prime} \mathcal{L} f & =f^{\prime} \mathcal{D} f-f^{\prime} \mathcal{S} f= \\
& =\sum_{i=1}^{m} d_{i} f_{i}^{2}-\sum_{i, j=1}^{m} f_{i} f_{j} s_{i j}= \\
& =\frac{1}{2}\left(\sum_{i=1}^{m}\left(\sum_{j=1}^{m} s_{i j}\right) f_{i}^{2}-2 \sum_{i, j=1}^{m} f_{i} f_{j} s_{i j}+\sum_{j=1}^{m}\left(\sum_{i=1}^{m} s_{i j}\right) f_{j}^{2}\right)= \\
& =\frac{1}{2} \sum_{i, j=1}^{m} s_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

- measures the variation of function f along the graph
- the value $f^{\prime} \mathcal{L} f$ is low when close vertices agree in their f_{i},
- assumes that near objects shall have close function values (f),
- the discrete Laplace operator encodes the same property,
- an interesting case: $f=\mathbb{1}_{A}\left(f_{i}=1\right.$ if $v_{i} \in A$ otherwise $\left.f_{i}=0\right), A$ is a graph component.

Spectral clustering - eigenvectors of \mathcal{L}

- eigenvectors x of \mathcal{L} matix $(\mathcal{L} x=\lambda x)$ provide a good graph partitioning indication,
- an ultimate (ideal) case: graph has exactly k components
- k smallest eigenvectors ideally split k clusters,
$-\lambda_{1}=\cdots=\lambda_{k}=0<\lambda_{k+1} \leq \cdots \leq \lambda_{m} \rightarrow x_{1}, \ldots, x_{k}$,
- other (usual) cases: a connected graph, k component candidates exist
- the space of k smallest eigenvectors (with nonzero λ) allows to form k clusters.

The ideal case for $k=2$.

Spectral clustering - eigenvalues of \mathcal{L}

- provided k is unknown, eigengap statistic
- a k-means gap heuristic analogy,
- concern only small eigenvectors before the first jump in eigenvalues,
- the number of clusters matches the number of selected eigenvectors.

Eigenvalues

Eigenvalues

Histogram of the sample

Eigenvalues

Example: spirals - eigenvectors

- similarity matrix splits the graph into components nearly ideally,
- the second eigenvector of \mathcal{L} is a perfect component indicator.

Similarity matrix for RBF kernel with a suitable σ the instance order is illustrative and keeps the real spiral membership

Projection - the first and second eigenvector space \mathcal{S} colors give the real spiral membership, k -means clustering is trivial

Spectral clustering - summary

- advantages
- does not make strong assumptions on cluster shape,
- simple to implement - uses existing algorithms,
- does not have a local optima, cannot stuck,
- a modular approach applicable in a range of problems
* modify the kernel or similarity graph to adapt to a new problem,
- eigengap heuristic to find an optimal cluster number,
- successful in a range of real problems,
- disadvantages
- can be sensitive to choice of parameters, unclear how to set them, * kernels (eg. σ for RBF), graph similarity (ϵ or k),
- computationally expensive on large non-sparse graphs, * use only after simpler algorithms fail,
- not really clear what it does on non-regular graphs (e.g. power law graphs),
- demo
- http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html.

Advanced clustering - summary

- Clustering covers a wide range of methods
- not merely an instance set partitioning in \mathbb{R}^{n} dealing with disjoint clusters,
- in general, it discovers arbitrary frequent co-occurrence of events in data,
- unsupervised = subjective approach
- "gold true" does not exist (compare with classification),
- the outcome is influenced by the employed implicit and explicit knowledge,

Jain: Data Clustering: 50 Years Beyond K-Means, modified

- tightly related to learning
- conceptual clustering - knowledge-based with cluster/concept descriptions,
- semi-supervised clustering - both annotated and unannotated instances,

Advanced clustering - summary

- exists in many modifications
- bi-clustering
* rather the local (context-sensitive) than global similarity.
- topics not covered
- heterogenous data
* that cannot be represented as a constant-size feature vector,
- large scale clustering
* efficient NN, incremental clustering, sampling, distributed computing, prior data summarization,
- clustering ensembles
* the result obtained by combining multiple partitions.

Recommended reading, lecture resources

:: Reading

- von Luxburg: Lectures on Clustering.
- PASCAL Bootcamp in Machine Learning, Vilanova (Barcelona), 2007,
- http://videolectures.net/bootcamp07_luxburg_clu/,

