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Jǐŕı Kléma

Department of Computer Science,
Czech Technical University in Prague

http://cw.felk.cvut.cz/wiki/courses/b4m36san/start



pComparison: k-means and hierarchical single-link

� single linkage tends to generate longer non-compact clusters,

� k-means makes compact clusters, complete linkage is outlier sensitive,

k-means intuitively correct

single linkage intuitively correct

Carnegie Mellon University, course: Statistics 36-350: Data Mining
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pSpectral clustering – motivation

� clustering algorithms assume certain cluster shapes

− unexpected shapes cause difficulties (eg. linearly non-separable clusters),

− “classical pairwise similarity” can be insufficient.

K-means application Single linkage application

R, kernlab package, specc function demo
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pSpectral clustering – context

� frequent solution is a feature space transformation,

� a domain independent clustering algorithm, the transformation tuned for the domain

− explicit transformation

∗ get the object coordinates in the new feature space,

∗ traditional clustering in the new space,

∗ illustrative, but impractical,

− implicit transformation

∗ via similarity resp. kernel function K : X × X → R,

∗ purely a function of object pairs, no object coordinates in the new space,

∗ very natural for clustering, similarity/distance its essential part anyway,

∗ kernel trick analogy (SVM classification),

· kernel k-means (see the next slide),

∗ an implicit high-dimensional space, clusters (classes) potentially easily separable,

∗ kernel PCA – kernel matrix → diagonalize → a low-dimensional feature space.
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pKernel k-means

� apply k-means in the transformed feature space induced by a kernel function

− the original objects: x1, x2, . . . , xm,

− the transformed objects: Φ(x1),Φ(x2), . . . ,Φ(xm) (not explicitly calculated),

− the kernel function: k(xi, xj) = 〈Φ(xi),Φ(xj)〉,
− cluster centers in the transformed space: µv = 1

|Cv|
∑

xi∈Cv
Φ(xi) (not explicitly known),

− only (squared) distances between objects and cluster centers need to be known:

||Φ(x)− µv||2 = ||Φ(x)− 1

|Cv|
∑
xi∈Cv

Φ(xi)||2 =

= 〈Φ(x)− 1

|Cv|
∑
xi∈Cv

Φ(xi),Φ(x)− 1

|Cv|
∑
xi∈Cv

Φ(xi)〉 =

= 〈Φ(x),Φ(x)〉 − 2

|Cv|
∑
xi∈Cv

〈Φ(x),Φ(xi)〉 +
1

|Cv|2
∑

xi∈Cv,xj∈Cv

〈Φ(xi),Φ(xj)〉 =

= k(x, x)− 2

|Cv|
∑
xi∈Cv

k(x, xi) +
1

|Cv|2
∑

xi∈Cv,xj∈Cv

k(xi, xj)
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pExample: spirals – connectivity kernel, Gaussian kernel

� connectivity kernel

− the object pair distance given by the max edge on the path connecting the objects,

− if there are more paths, the one minimizing the criterion above is taken,

− e.g., this kernel makes k-means behave similar to single linkage hierarchical clustering,

Fischer et al.: Clustering with the Connectivity Kernel

� Gaussian (RBF) kernel

− s(xi, xj) = exp(−||xi − xj||/σ2),

− σ set to have a “tight” object neighborhood,

− an implicit feature space (infinite dimension).
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p Famous statistical blunders . . .

US presidential elections, 1936 Draft lottery, 1970 Financial crisis, 2008

FD Roosevelt - Alf Landon Vietnam war Gaussian copula function
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pSpectral clustering in a nutshell

� input: a set of objects,

� described as a graph,

� edges encode similarity,

� graph decomposed into components = clusters,

� graph partitioned by its spectral properties.

Azran: A Tutorial on Spectral Clustering
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pGraph theory – basic terms

� vertex (object) similarity (affinity)

− suv = 〈u, v〉,

� vertex degree (volume), degree matrix

− du =
∑m

v=1 suv,

− D = diag(d1, . . . ,dm),

� size and degree of a vertex set (cluster)

− |A| . . . the number of vertices in A,

− vol(A) =
∑

u∈A du,

� an edge cut between two components

− cut(A,B) =
∑

u∈A
∑

v∈B suv.

Azran: A Tutorial on Spectral Clustering
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pSpectral clustering as an approximated minimum graph cut

� clustering ∼ partition the similarity graph into components,

� can be solved as an optimization problem

− search for a minimum edge cut in the similarity graph S to make it disconnected

∗ min
A⊂S

cut(A, Ā),

∗ a computationally feasible problem, but rather unsatisfactory partitions,

mincut, incorrect RatioCut, Ncut, correct

− a “reasonable” size of the components needs to be required

∗ minimize one of the balanced cut criteria,

∗ RatioCut(A,B) = cut(A,B)
(

1
|A| +

1
|B|
)

,

∗ Ncut(A,B) = cut(A,B)
(

1
vol(A) + 1

vol(B)

)
,

∗ the dark side of the coin: NP-hard problems,

� spectral clustering provides a relaxed and feasible solution to the balanced cut problem.
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pSpectral clustering – algorithm

� inputs: X = [xij]m×n = {x1, . . . , xm} ⊂ Rn, k

1. select the similarity function

− linear, RBF, polynomial, etc.

− a general rule assigning functions to problems does not exist,

2. compute the similarity (adjacency) matrix S = [sij]m×m

− (a new implicit feature space originates),

3. construct a “reasonable” similarity graph by editing S
− S is a complete graph, vertices ∼ objects, similarities ∼ edges,

− remove long (improper) edges,

4. derive the Laplace matrix L out of the similarity matrix S
− unnormalized: L = D − S,

− normalized: Lrw = D−1L = I − D−1S,

5. project into an explicit space of k first eigenvectors of L,

− V = [vij]m×k, eigenvectors of L as columns,

6. k-means clustering in V matrix

− V rows interpreted as new object positions in k-dimensional space.

11/25 B4M36SAN Advanced clustering



pSpectral clustering – similarity graph

� reduce the complete graph to an undirected graph concerning local neighborhoods,

� vertices shall have a reasonable degree (� m),

� basic approaches

− ε-neighborhood

∗ sij > ε→ vertices i and j connected by an edge, otherwise sij = 0,

− k-nearest neighbors

∗ symmetric: connect i and j if i belongs to k nearest neighbors of j or vice versa,

∗ mutual: connect i and j if i belongs to k nearest neighbors of j and vice versa,

− keep the complete graph

∗ usually with the RBF or other strictly local kernel.

Euclidean similarity, 3 nearest neighbors (var sym) RBF kernel, too small ε RBF kernel, a suitable ε

12/25 B4M36SAN Advanced clustering



pSpectral clustering – graph Laplacian

� concern the unnormalized option: L = D − S

� then for ∀f ∈ Rm

f ′Lf = f ′Df − f ′Sf =

=

m∑
i=1

dif
2
i −

m∑
i,j=1

fifjsij =

=
1

2

( m∑
i=1

(

m∑
j=1

sij)f
2
i − 2

m∑
i,j=1

fifjsij +

m∑
j=1

(

m∑
i=1

sij)f
2
j

)
=

=
1

2

m∑
i,j=1

sij(fi − fj)2

� measures the variation of function f along the graph

− the value f ′Lf is low when close vertices agree in their fi,

− assumes that near objects shall have close function values (f),

� the discrete Laplace operator encodes the same property,

� an interesting case: f = 1A (fi = 1 if vi ∈ A otherwise fi = 0), A is a graph component.
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pSpectral clustering – eigenvectors of L

� eigenvectors x of L matix (Lx = λx) provide a good graph partitioning indication,

� an ultimate (ideal) case: graph has exactly k components

− k smallest eigenvectors ideally split k clusters,

− λ1 = · · · = λk = 0 < λk+1 ≤ · · · ≤ λm → x1, . . . , xk,

� other (usual) cases: a connected graph, k component candidates exist

− the space of k smallest eigenvectors (with nonzero λ) allows to form k clusters.

The ideal case for k = 2.
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pSpectral clustering – eigenvalues of L

� provided k is unknown, eigengap statistic

− a k-means gap heuristic analogy,

− concern only small eigenvectors before the first jump in eigenvalues,

− the number of clusters matches the number of selected eigenvectors.

Luxburg: Clustering.
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pExample: spirals – eigenvectors

� similarity matrix splits the graph into components nearly ideally,

� the second eigenvector of L is a perfect component indicator.

Similarity matrix for RBF kernel with a suitable σ
the instance order is illustrative and keeps the real spiral membership

Projection – the first and second eigenvector space S
colors give the real spiral membership, k-means clustering is trivial
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pSpectral clustering – summary

� advantages

− does not make strong assumptions on cluster shape,

− simple to implement – uses existing algorithms,

− does not have a local optima, cannot stuck,

− a modular approach applicable in a range of problems

∗ modify the kernel or similarity graph to adapt to a new problem,

− eigengap heuristic to find an optimal cluster number,

− successful in a range of real problems,

� disadvantages

− can be sensitive to choice of parameters, unclear how to set them,

∗ kernels (eg. σ for RBF), graph similarity (ε or k),

− computationally expensive on large non-sparse graphs,

∗ use only after simpler algorithms fail,

− not really clear what it does on non-regular graphs (e.g. power law graphs),

� demo

− http://www.ml.uni-saarland.de/GraphDemo/GraphDemo.html.
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pAdvanced clustering – summary

� Clustering covers a wide range of methods

− not merely an instance set partitioning in Rn dealing with disjoint clusters,

− in general, it discovers arbitrary frequent co-occurrence of events in data,

� unsupervised = subjective approach

− “gold true” does not exist (compare with classification),

− the outcome is influenced by the employed implicit and explicit knowledge,

Jain: Data Clustering: 50 Years Beyond K-Means, modified

� tightly related to learning

− conceptual clustering – knowledge-based with cluster/concept descriptions,

− semi-supervised clustering – both annotated and unannotated instances,
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pAdvanced clustering – summary

� exists in many modifications

− bi-clustering

∗ rather the local (context-sensitive) than global similarity.

� topics not covered

− heterogenous data

∗ that cannot be represented as a constant-size feature vector,

− large scale clustering

∗ efficient NN, incremental clustering, sampling, distributed computing, prior data sum-

marization,

− clustering ensembles

∗ the result obtained by combining multiple partitions.

Jain: Data Clustering: 50 Years Beyond K-Means, modified
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pRecommended reading, lecture resources

:: Reading

� von Luxburg: Lectures on Clustering.

− PASCAL Bootcamp in Machine Learning, Vilanova (Barcelona), 2007,

− http://videolectures.net/bootcamp07 luxburg clu/,
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