Outlier and anomaly detection

Tomáš Pevný

Department of Computers, Czech Technical University

December 2, 2019

Training set for supervised binary classification

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Training set for unsupervised anomaly classification

Training set for supervised anomaly classification

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

What are the advantages?

You can detect new types of fruit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Anomaly detection refers to the problem of finding patterns in data that do not conform to expected behavior¹.

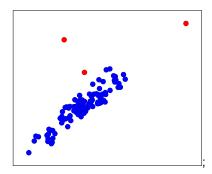
An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism².

 V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: a survey, 2009
 D. M. Hawkins, Identification of Outliers, 1980

Formal definition of outliers / anomalies?

Outliers

- have different statistical properties,
- or they are in low-density regions,
- or they are far from majority.

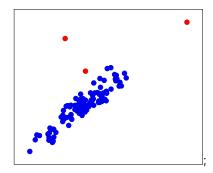


イロト イ押ト イヨト イヨト

Formal definition of outliers / anomalies?

Outliers

- have different statistical properties,
- or they are in low-density regions,
- or they are far from majority.



イロト 不得下 イヨト イヨト

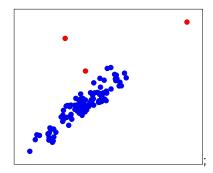
э

Definition of outliers influences the method.

Formal definition of outliers / anomalies?

Outliers

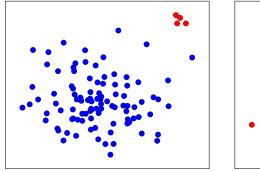
- have different statistical properties,
- or they are in low-density regions,
- or they are far from majority.

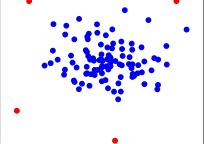


イロト イヨト イヨト

Definition of outliers is application dependent.

Types of anomalies



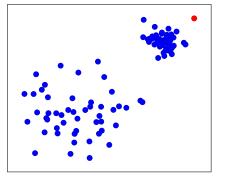


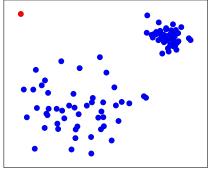
concentrated

scattered

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Types of anomalies





local

global

▲□▶ ▲圖▶ ▲国▶ ▲国▶

æ

Taxonomy

- supervised vs. unsupervised
- ▶ model centric vs. data centric

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Parzen window estimator — motivation

Estimate probability density and identify points in areas of low density.

E. Parzen, On Estimation of a Probability Density Function and Mode, 1962

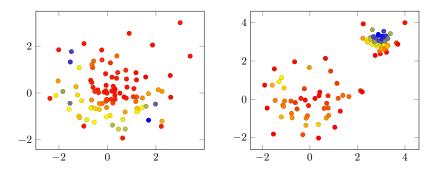
Parzen window estimator — calculation

The density in point x is estimated from training points $\{x_i\}_{i=1}^N$ as

$$f(x) = \frac{1}{hN} \sum_{i=1}^{N} k\left(\frac{x - x_i}{h}\right),$$

where k is the kernel (e.g. Gaussian kernel $k(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$).

Parzen window estimator — example



Estimate probability density in each point.

(日)

ъ

E. Parzen, On Estimation of a Probability Density Function and Mode, 1962

K-nearest neighbor — motivation

Outliers are far from points / they have "empty" neighbourhood.

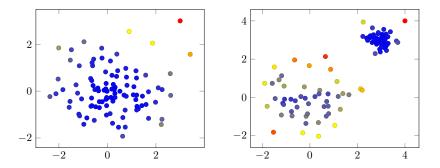
S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, 2000

K-nearest neighbor — calculation

- 1. For sample $\{x_i\}_{i=1}^N$ calculate its distance to k^{th} nearest neighbor.
- 2. Return fraction p of samples as outliers.
- Variants differs by calculating score:
 - mean distance to all,
 - distance to mass.

S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, 2000

K-nearest neighbor — example



S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining outliers from large data sets, 2000

Local outlier factor — motivation

Outliers have low density with respect to its k neighborhood.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying density-based local outliers, 2000.

Local outlier factor — calculation

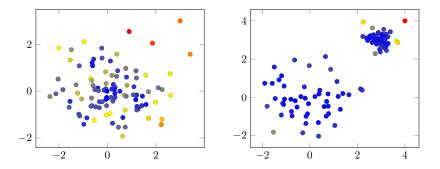
- 1. For every $\{x_i\}_{i=1}^N$ estimate the local density, $Id_k(x_i)$, as an inverse of average robust distance to k nearest neighbor.
- 2. Compare density of x_i with that of its k nearest neighbors, P_k ,

$$lof_k(x_i) = \frac{1}{k} \sum_{x \in P_k} \frac{\mathrm{Id}_k(x)}{\mathrm{Id}_k(x_i)}$$

3. The robust distance is calculated as

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying density-based local outliers, 2000.

Local outlier factor — example



M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying density-based local outliers, 2000.

Angle-based outlier detection — motivation

- Angles are more stable than distances in high dimensions.
- Object o is an outlier if most other objects are located in similar directions, it is on the border.
- Object o is an inlier if most other objects are located in varying directions, it is in the middle.

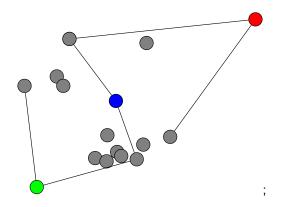
N. Pham, R. Pagh, A Near-linear Time Approximation Algorithm for Angle-based Outlier Detection in High-dimensional Data, 2012.

Angle-based outlier detection — motivation

abod
$$(x_i) = \underset{k,l\neq i}{\operatorname{var}} \frac{\langle x_i - x_k, x_i - x_j \rangle}{\|x_i - x_k\| \|x_i - x_j\|}.$$

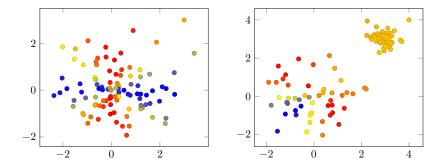
(ロ)、(型)、(E)、(E)、 E) のQ(C)

Angle-based outlier detection



(日)(4日)(4日)(4日)(日)

Angle-based outlier detection — example



Parametric anomaly detection — motivation

Robustly fit a known distribution and identify points with low probability.

Parametric anomaly detection

Multivariate Gaussian distribution

Assumes that data follows

$$x \sim |\Sigma|^{-1} (2\pi)^{-\frac{d}{2}} e^{-(x-\mu)^T \Sigma(x-\mu)}$$

Related to principal component analysis and Mahalanobis distance.

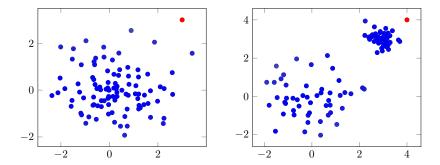
Mixture of multivariate Gaussian distributions

Assumes that data follows

$$x \sim \sum_{j=1}^{m} w_j |\Sigma_j|^{-1} (2\pi)^{-rac{d}{2}} e^{-(x-\mu_j)^{\mathrm{T}} \Sigma(x-\mu)}$$

Difficult to fit.

Parametric anomaly detection — example



▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Density level estimation

Find the area of minimal volume, such that α fraction of probability mass is outside.

Density level estimation

$$\arg\min_{f\in\mathscr{F},\lambda}\operatorname{Vol}(U_{f,\lambda})=|\{x|f(x)\geq\lambda\}|$$

subject to

$$\int_{\mathscr{X}} f(x) p(x) dx \ge 1 - \alpha$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

where \mathscr{F} is a class of probability density functions defined on \mathscr{H} .

One-class support vector machines — motivation

Estimates the support of the probability distribution allowing at most v false positive rate.

B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. Smola, R. C. Williamson, Estimating the support of a high-dimensional distribution, 2001

One-class support vector machines — calculation

training:

classification:

$$rgmin_{w\in\mathbb{R}^d,
ho}rac{1}{2}\|w\|^2-
ho+rac{1}{
uN}\sum_{i=1}^N\xi_i$$

$$f(x) = \langle w, x_i \rangle - \rho > 0$$

subject to

$$\begin{array}{rcl} \langle w, x_i \rangle & \geq &
ho - \xi_i \ \xi_i & \geq & 0. \end{array}$$

Finds the hyper-plane separating the data from the origin with the highest margin, allowing at most v misclassified points.

One-class support vector machines — calculation

training:

classification:

$$\arg\min_{w\in\mathbb{R}^n,\rho}\frac{1}{2}\sum_{i,j=1}^{n,n}\alpha_i\alpha_jk(x_i,x_j)-\rho+\frac{1}{\nu N}\sum_{i=1}^N\xi_i\quad f(x)=\alpha_ik(x_j,x)-\rho>0$$

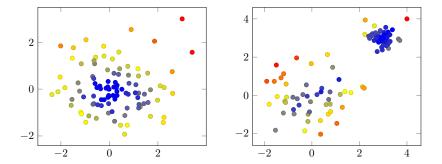
subject to

$$\sum_{j=1}^n lpha_i k(x_j, x_i) \geq
ho - \xi_i$$

 $\xi_i \geq 0.$

 $k(x_i, .)$ is a feature map induced by the chosen kernel, most popular choice is $k(x, x') = e^{-\gamma ||x-x'||^2}$.

One-class support vector machines — Example



() > < </p>

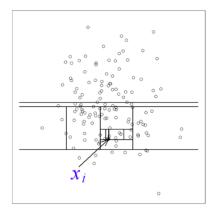
Isolation Forest — motivation

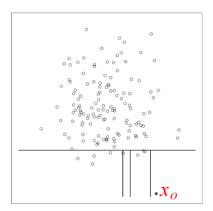
Anomalous points should be close to the root in randomly constructed tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

F. T. Liu, K. M. Ting, Z. H. Zhou, Isolation Forest, 2008

Isolation Forest — Example





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Isolation Forest — calculation

The anomaly score a sample x is defined as

$$s(x) = 2^{-\frac{E(h(x))}{c(n)}},$$

where

- h(x) is depth of list containing x
- c(n) is the average path length of unsuccessful search in binary search tree with n items

$$c(n) = 2H(n-1) - 2\frac{n-1}{n}$$

• $H(i) \approx ln(i) + 0.5772156649$

Frac: Supervised approach to anomaly detection — motivation

A dependency structure among features is violated for anomalies.

K. Noto, C. Brodley, D. Slonim, FRaC: Feature-modeling approach for semi-supervised and unsupervised anomaly detection, 2012

Frac: Supervised approach to anomaly detection — calculation

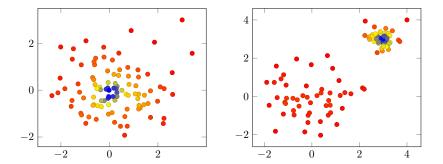
- Build a predictor of each feature x_i on rest $x_{\sim x_i}$.
- Score is proportional to the probability of estimation error

$$s(x) = \frac{1}{d} \sum_{i=1}^{d} \log p_i(x_i - o_i(x_{\sim i})),$$

where

p_i(e) is the probability of *i*th- estimator making error *e o_i(x_{∼i})* output of *i*th estimator of *x_i* from *x_{∼i}*.

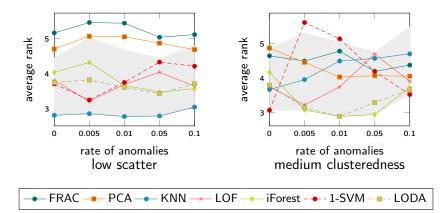
Frac: Supervised approach to anomaly detection — motivation



Experimental comparison

Comparing different methods is difficult due to lack of benchmarking problems.

Experimental comparison



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lower average rank is better.

Anomaly detection on data-streams

 Most prior art adapts batch-based algorithms by floating window or by alternating models.

Some methods assumes continuity of data streams.

Experimental comparison

		continuous		two hist	two histograms	
	dataset	AUC	time	AUC	time	
	covertype	0.972	4.42	0.989	3.00	
	http - 3	0.992	7.51	0.994	5.24	
	http	0.991	8.40	0.993	6.00	
	shuttle	0.980	0.49	0.994	0.41	
	smtp	0.970	1.34	0.994	1.06	
	smtp -3	0.871	1.35	0.886	1.11	
	smtp + http	0.989	9.65	0.993	7.99	

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

Tips for successful anomaly dataction

Understand the domain:

types of anomalies

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

rate of anomalies

Tips for successful anomaly dataction

Understand the domain:

- types of anomalies
- rate of anomalies
- You will not get away from labelling.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Explaining the anomaly

Explaining why anomaly happened might be an invaluable information to the analyst.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The main idea

- Outliers should be separable in
 - in few dimensions
 - with a large margin.
- They should be separable by a tree of small height.

Training multiple trees increases robustness.

Explaining the anomaly

Summary of the Explainer algorithm

```
labels \leftarrow anomalyDetector(data)

SRF \leftarrow \{\emptyset\}

for all data(labels == anomaly) do

T \leftarrow createTrainingSet(size)

t \leftarrow trainTree(T)

SRF \leftarrow t

end for

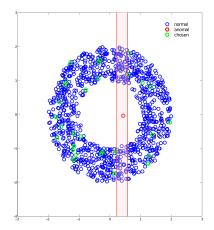
extractFeatures(SRF)

extractRules(SRF)
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Training the tree

- 1. Select dimension removing
 - most normal sampleswith highest margin.
- 2. Repeat until sample is separated.
- Path to leaf with anomalous sample indicates separating features.

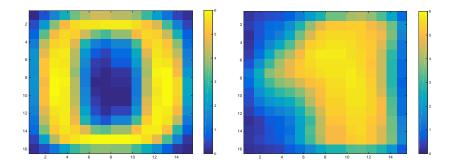


Extracting the features

- To increase robustness, train multiple trees.
- Each tree provides set of features.
- Pick the most frequent ones.

Min provides explanation using the minimal set of features. Max returns all features in which the anomaly can be detected.

Example of explanation

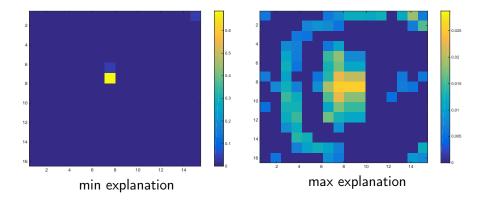


Average zero vs. average one

・ロト ・ 一下・ ・ ヨト ・

3 b

Features provided by the explainer



▲ロト▲御ト▲臣ト▲臣ト 臣 めんの

Summary

- Anomaly / outlier detection is not a magic bullet.
- Know strength and weaknesses of algorithm you chose.

- Learn about domain (type of anomalies).
- Anomalies might not be anomalies of interest.