
Towards the Web Ontology Language (OWL)

Petr Křemen

petr.kremen@fel.cvut.cz

Winter 2021

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 1 / 43

Outline

1 How to extend ALC?

2 Web Ontology Language
OWL Profiles
Advanced Material (Optional)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 2 / 43

How to extend ALC?

1 How to extend ALC?

2 Web Ontology Language
OWL Profiles
Advanced Material (Optional)

How to extend ALC?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 3 / 43

How to extend ALC?

Extending ALC

We have introduced ALC. Its expressiveness is higher than the
expressiveness of the propositional calculus, still it lacks many
constructs needed for practical applications.

Let’s take a look, how to extend ALC while preserving decidability.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 3 / 43

How to extend ALC?

Extending ALC

We have introduced ALC. Its expressiveness is higher than the
expressiveness of the propositional calculus, still it lacks many
constructs needed for practical applications.
Let’s take a look, how to extend ALC while preserving decidability.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 3 / 43

How to extend ALC?

Extending ALC (2)
N (Number restructions) are used for restricting the number of

successors in the given role for the given concept.
concept D its interpretation DI

(≥ n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ ≥ n

}

(≤ n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ ≤ n

}

(= n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ = n

}
Example

Concept Woman u (≤ 3 hasChild) denotes women who have at most 3
children.

What denotes the axiom Car v (≥ 4 hasWheel) ?

... and Bicycle ≡ (= 2 hasWheel) ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 4 / 43

How to extend ALC?

Extending ALC (2)
N (Number restructions) are used for restricting the number of

successors in the given role for the given concept.
concept D its interpretation DI

(≥ n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ ≥ n

}

(≤ n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ ≤ n

}

(= n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ = n

}
Example

Concept Woman u (≤ 3 hasChild) denotes women who have at most 3
children.

What denotes the axiom Car v (≥ 4 hasWheel) ?

... and Bicycle ≡ (= 2 hasWheel) ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 4 / 43

How to extend ALC?

Extending ALC (2)
N (Number restructions) are used for restricting the number of

successors in the given role for the given concept.
concept D its interpretation DI

(≥ n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ ≥ n

}

(≤ n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ ≤ n

}

(= n R)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}

∣∣∣ = n

}
Example

Concept Woman u (≤ 3 hasChild) denotes women who have at most 3
children.

What denotes the axiom Car v (≥ 4 hasWheel) ?

... and Bicycle ≡ (= 2 hasWheel) ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 4 / 43

How to extend ALC?

Extending ALC (3)
Q (Qualified number restrictions) are used for restricting the number of

successors of the given type in the given role for the given concept.
concept D its interpretation DI

(≥ n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ ≥ n

}

(≤ n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ ≤ n

}

(= n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ = n

}
Example

Concept Woman u (≥ 3 hasChild Man) denotes women who have at least 3
sons.

What denotes the axiom Car v (≥ 4 hasPart Wheel) ?

Which qualified number restrictions can be expressed in ALC ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 5 / 43

How to extend ALC?

Extending ALC (3)
Q (Qualified number restrictions) are used for restricting the number of

successors of the given type in the given role for the given concept.
concept D its interpretation DI

(≥ n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ ≥ n

}

(≤ n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ ≤ n

}

(= n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ = n

}
Example

Concept Woman u (≥ 3 hasChild Man) denotes women who have at least 3
sons.

What denotes the axiom Car v (≥ 4 hasPart Wheel) ?

Which qualified number restrictions can be expressed in ALC ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 5 / 43

How to extend ALC?

Extending ALC (3)
Q (Qualified number restrictions) are used for restricting the number of

successors of the given type in the given role for the given concept.
concept D its interpretation DI

(≥ n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ ≥ n

}

(≤ n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ ≤ n

}

(= n R C)

{
a
∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}

∣∣∣ = n

}
Example

Concept Woman u (≥ 3 hasChild Man) denotes women who have at least 3
sons.

What denotes the axiom Car v (≥ 4 hasPart Wheel) ?

Which qualified number restrictions can be expressed in ALC ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 5 / 43

How to extend ALC?

Extending ALC (4)

O (Nominals) can be used for naming a concept elements explicitely.
concept D its interpretation DI

{a1, . . . , an} {aI1 , . . . , aIn }

Example

Concept {MALE , FEMALE} denotes a gender concept that must be
interpreted with at most two elements. Why at most ?

Continent ≡
{EUROPE , ASIA, AMERICA, AUSTRALIA, AFRICA, ANTARCTICA} ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 6 / 43

How to extend ALC?

Extending ALC (4)

O (Nominals) can be used for naming a concept elements explicitely.
concept D its interpretation DI

{a1, . . . , an} {aI1 , . . . , aIn }

Example

Concept {MALE , FEMALE} denotes a gender concept that must be
interpreted with at most two elements. Why at most ?

Continent ≡
{EUROPE , ASIA, AMERICA, AUSTRALIA, AFRICA, ANTARCTICA} ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 6 / 43

How to extend ALC?

Extending ALC (5)

I (Inverse roles) are used for defining role inversion.
role S its interpretation SI

R− (RI)−1

Example

Role hasChild− denotes the relationship hasParent.

What denotes axiom Person v (= 2 hasChild−) ?

What denotes axiom Person v ∃hasChild− · ∃hasChild · > ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 7 / 43

How to extend ALC?

Extending ALC (5)

I (Inverse roles) are used for defining role inversion.
role S its interpretation SI

R− (RI)−1

Example

Role hasChild− denotes the relationship hasParent.

What denotes axiom Person v (= 2 hasChild−) ?

What denotes axiom Person v ∃hasChild− · ∃hasChild · > ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 7 / 43

How to extend ALC?

Extending ALC (5)

I (Inverse roles) are used for defining role inversion.
role S its interpretation SI

R− (RI)−1

Example

Role hasChild− denotes the relationship hasParent.

What denotes axiom Person v (= 2 hasChild−) ?

What denotes axiom Person v ∃hasChild− · ∃hasChild · > ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 7 / 43

How to extend ALC?

Extending ALC (6)

·trans (Role transitivity axiom) denotes that a role is transitive. Attention –
it is not a transitive closure operator.

axiom α I |= α iff
trans(R) RI is transitive

Example
Role isPartOf can be defined as transitive, while role hasParent is not.
What about roles hasPart, hasPart−, hasGrandFather− ?

What is a transitive closure of a relationship ? What is the difference
between a transitive closure of hasDirectBossI and hasBossI .

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 8 / 43

How to extend ALC?

Extending ALC (6)

·trans (Role transitivity axiom) denotes that a role is transitive. Attention –
it is not a transitive closure operator.

axiom α I |= α iff
trans(R) RI is transitive

Example
Role isPartOf can be defined as transitive, while role hasParent is not.
What about roles hasPart, hasPart−, hasGrandFather− ?

What is a transitive closure of a relationship ? What is the difference
between a transitive closure of hasDirectBossI and hasBossI .

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 8 / 43

How to extend ALC?

Extending ALC (7)

H (Role hierarchy) serves for expressing role hierarchies (taxonomies) –
similarly to concept hierarchies.

axiom α I |= α iff
R v S RI ⊆ SI

Example
Role hasMother can be defined as a special case of the role hasParent.

What is the difference between a concept hierarchy Mother v Parent and
role hierarchy hasMother v hasParent.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 9 / 43

How to extend ALC?

Extending ALC (7)

H (Role hierarchy) serves for expressing role hierarchies (taxonomies) –
similarly to concept hierarchies.

axiom α I |= α iff
R v S RI ⊆ SI

Example
Role hasMother can be defined as a special case of the role hasParent.

What is the difference between a concept hierarchy Mother v Parent and
role hierarchy hasMother v hasParent.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 9 / 43

How to extend ALC?

Extending ALC (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.

axiom α I |= α iff
R ◦ S v P RI ◦ SI v PI

Dis(R, S) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example
How would you define the role hasUncle by means of hasSibling and
hasParent ?

how to express that R is transitive, using a role chain ?

Whom does the following concept denote Person u ∃likes · Self ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 10 / 43

How to extend ALC?

Extending ALC (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.

axiom α I |= α iff
R ◦ S v P RI ◦ SI v PI

Dis(R, S) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example
How would you define the role hasUncle by means of hasSibling and
hasParent ?

how to express that R is transitive, using a role chain ?

Whom does the following concept denote Person u ∃likes · Self ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 10 / 43

How to extend ALC?

Extending ALC (8)

R (role extensions) serve for defining expressive role constructs, like role
chains, role disjunctions, etc.

axiom α I |= α iff
R ◦ S v P RI ◦ SI v PI

Dis(R, S) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example
How would you define the role hasUncle by means of hasSibling and
hasParent ?

how to express that R is transitive, using a role chain ?

Whom does the following concept denote Person u ∃likes · Self ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 10 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),

R is inverse functional means > v
(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,

R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,

R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,

R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),

R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R

I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)

I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)

¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Syntactic Sugar

R is functional means > v (≤ 1 R),
R is inverse functional means > v

(
≤ 1 R−1)

R is reflexive means > v ∃R · Self ,
R is irreflexive means ∃R · Self v ⊥,
R is symmetric means R v R−1,
R is asymmetric means Dis(R, R−1),
R is transitive means R ◦ R v R
I = J means {I} v {J} (individual equality assertions)
I 6= J means {I} v ¬{J} (individual equality assertions)
¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 11 / 43

How to extend ALC?

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

(� represents e.g. the ”believe” operator of an agent)

�(Man v Person u ∀hasFather ·Man) (1)

As ALC is a syntactic variant to a multi-modal propositional logic, where each role
represents the accessibility relation between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

�(Man =⇒ Person ∧ �hasFather Man) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions
Data Types (D) allow integrating a data domain (numbers, strings), e.g. Person u ∃hasAge · 23

represents the concept describing “23-years old persons”.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 12 / 43

How to extend ALC?

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

(� represents e.g. the ”believe” operator of an agent)

�(Man v Person u ∀hasFather ·Man) (1)

As ALC is a syntactic variant to a multi-modal propositional logic, where each role
represents the accessibility relation between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

�(Man =⇒ Person ∧ �hasFather Man) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions
Data Types (D) allow integrating a data domain (numbers, strings), e.g. Person u ∃hasAge · 23

represents the concept describing “23-years old persons”.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 12 / 43

How to extend ALC?

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

(� represents e.g. the ”believe” operator of an agent)

�(Man v Person u ∀hasFather ·Man) (1)

As ALC is a syntactic variant to a multi-modal propositional logic, where each role
represents the accessibility relation between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

�(Man =⇒ Person ∧ �hasFather Man) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions
Data Types (D) allow integrating a data domain (numbers, strings), e.g. Person u ∃hasAge · 23

represents the concept describing “23-years old persons”.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 12 / 43

How to extend ALC?

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

(� represents e.g. the ”believe” operator of an agent)

�(Man v Person u ∀hasFather ·Man) (1)

As ALC is a syntactic variant to a multi-modal propositional logic, where each role
represents the accessibility relation between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

�(Man =⇒ Person ∧ �hasFather Man) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

Data Types (D) allow integrating a data domain (numbers, strings), e.g. Person u ∃hasAge · 23
represents the concept describing “23-years old persons”.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 12 / 43

How to extend ALC?

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

(� represents e.g. the ”believe” operator of an agent)

�(Man v Person u ∀hasFather ·Man) (1)

As ALC is a syntactic variant to a multi-modal propositional logic, where each role
represents the accessibility relation between worlds in Kripke structure, the previous
example can be transformed to the modal logic as:

�(Man =⇒ Person ∧ �hasFather Man) (2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions
Data Types (D) allow integrating a data domain (numbers, strings), e.g. Person u ∃hasAge · 23

represents the concept describing “23-years old persons”.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 12 / 43

Web Ontology Language

1 How to extend ALC?

2 Web Ontology Language
OWL Profiles
Advanced Material (Optional)

Web Ontology Language

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 13 / 43

Web Ontology Language

Description logics behind OWL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

SHOIN is a description logics that backs OWL-DL.
SROIQ is a description logics that backs OWL2-DL.
Both OWL-DL and OWL2-DL are semantic web languages – they
extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion,
AllDisjoint, etc.

extralogical constructs – imports, annotations
data types – XSD datatypes are used

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 13 / 43

Web Ontology Language

Description logics behind OWL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

SHOIN is a description logics that backs OWL-DL.

SROIQ is a description logics that backs OWL2-DL.
Both OWL-DL and OWL2-DL are semantic web languages – they
extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion,
AllDisjoint, etc.

extralogical constructs – imports, annotations
data types – XSD datatypes are used

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 13 / 43

Web Ontology Language

Description logics behind OWL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

SHOIN is a description logics that backs OWL-DL.
SROIQ is a description logics that backs OWL2-DL.

Both OWL-DL and OWL2-DL are semantic web languages – they
extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion,
AllDisjoint, etc.

extralogical constructs – imports, annotations
data types – XSD datatypes are used

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 13 / 43

Web Ontology Language

Description logics behind OWL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

SHOIN is a description logics that backs OWL-DL.
SROIQ is a description logics that backs OWL2-DL.
Both OWL-DL and OWL2-DL are semantic web languages – they
extend the corresponding description logics by:

syntactic sugar – axioms NegativeObjectPropertyAssertion,
AllDisjoint, etc.

extralogical constructs – imports, annotations
data types – XSD datatypes are used

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 13 / 43

Web Ontology Language

Description logics behind OWL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

SHOIN is a description logics that backs OWL-DL.
SROIQ is a description logics that backs OWL2-DL.
Both OWL-DL and OWL2-DL are semantic web languages – they
extend the corresponding description logics by:
syntactic sugar – axioms NegativeObjectPropertyAssertion,

AllDisjoint, etc.

extralogical constructs – imports, annotations
data types – XSD datatypes are used

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 13 / 43

Web Ontology Language

Description logics behind OWL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

SHOIN is a description logics that backs OWL-DL.
SROIQ is a description logics that backs OWL2-DL.
Both OWL-DL and OWL2-DL are semantic web languages – they
extend the corresponding description logics by:
syntactic sugar – axioms NegativeObjectPropertyAssertion,

AllDisjoint, etc.
extralogical constructs – imports, annotations

data types – XSD datatypes are used

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 13 / 43

Web Ontology Language

Description logics behind OWL

From the previously introduced extensions, two prominent decidable
supersets of ALC can be constructed:

SHOIN is a description logics that backs OWL-DL.
SROIQ is a description logics that backs OWL2-DL.
Both OWL-DL and OWL2-DL are semantic web languages – they
extend the corresponding description logics by:
syntactic sugar – axioms NegativeObjectPropertyAssertion,

AllDisjoint, etc.
extralogical constructs – imports, annotations

data types – XSD datatypes are used

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 13 / 43

Web Ontology Language

From DL to OWL

All entities (concepts/roles/individuals) are identified by IRIs.
Prefix: : <http://ex.owl/>
Ontology: <http://ex.owl/o1>

ObjectProperty: :hasChild
Class: :Man
Class: :FatherOfSons
SubClassOf: :hasChild some owl:Thing and :hasChild only :Man

Individual: :John
Types: :FatherOfSons

classes – DL concepts (e.g. ex:Man, ex:Employee, etc.)
individuals – DL individuals (e.g. ex:John)

object/data properties – DL roles (e.g. ex:hasChild) / data roles (e.g.
ex:hasName)

OWL namespace is http://www.w3.org/2002/07/owl#, prefixed as owl:.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 14 / 43

Web Ontology Language

OWL Ontology Header
Prefix: : <http://ex.owl/>
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
Ontology: <http://ex.owl/o3> <http://ex.owl/o3-v1>

Import: <http://ex.owl/o4>
Import: <http://ex.owl/o5>
Annotations: rdfs:comment "An example ontology"@en,

:creator :John
AnnotationProperty: :creator
Individual: :John

An ontology is identified by

ontology IRI (http://ex.owl/o3) logically identifies an ontology
(although it might be stored e.g. in a local file)

version IRI (http://ex.owl/o3-v1) which is optional
Import: allows importing other ontologies (for backward
compatibility with OWL 1, the imported ontology is syntactically
included in case it has no Ontology: header)
Annotations: allows arbitrary ontology annotations (creators,
comments, backward compatibility, etc.)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 15 / 43

Web Ontology Language

OWL Ontology Header
Prefix: : <http://ex.owl/>
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
Ontology: <http://ex.owl/o3> <http://ex.owl/o3-v1>

Import: <http://ex.owl/o4>
Import: <http://ex.owl/o5>
Annotations: rdfs:comment "An example ontology"@en,

:creator :John
AnnotationProperty: :creator
Individual: :John

An ontology is identified by
ontology IRI (http://ex.owl/o3) logically identifies an ontology

(although it might be stored e.g. in a local file)

version IRI (http://ex.owl/o3-v1) which is optional
Import: allows importing other ontologies (for backward
compatibility with OWL 1, the imported ontology is syntactically
included in case it has no Ontology: header)
Annotations: allows arbitrary ontology annotations (creators,
comments, backward compatibility, etc.)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 15 / 43

Web Ontology Language

OWL Ontology Header
Prefix: : <http://ex.owl/>
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
Ontology: <http://ex.owl/o3> <http://ex.owl/o3-v1>

Import: <http://ex.owl/o4>
Import: <http://ex.owl/o5>
Annotations: rdfs:comment "An example ontology"@en,

:creator :John
AnnotationProperty: :creator
Individual: :John

An ontology is identified by
ontology IRI (http://ex.owl/o3) logically identifies an ontology

(although it might be stored e.g. in a local file)
version IRI (http://ex.owl/o3-v1) which is optional

Import: allows importing other ontologies (for backward
compatibility with OWL 1, the imported ontology is syntactically
included in case it has no Ontology: header)
Annotations: allows arbitrary ontology annotations (creators,
comments, backward compatibility, etc.)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 15 / 43

Web Ontology Language

OWL Ontology Header
Prefix: : <http://ex.owl/>
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
Ontology: <http://ex.owl/o3> <http://ex.owl/o3-v1>

Import: <http://ex.owl/o4>
Import: <http://ex.owl/o5>
Annotations: rdfs:comment "An example ontology"@en,

:creator :John
AnnotationProperty: :creator
Individual: :John

An ontology is identified by
ontology IRI (http://ex.owl/o3) logically identifies an ontology

(although it might be stored e.g. in a local file)
version IRI (http://ex.owl/o3-v1) which is optional

Import: allows importing other ontologies (for backward
compatibility with OWL 1, the imported ontology is syntactically
included in case it has no Ontology: header)

Annotations: allows arbitrary ontology annotations (creators,
comments, backward compatibility, etc.)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 15 / 43

Web Ontology Language

OWL Ontology Header
Prefix: : <http://ex.owl/>
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
Ontology: <http://ex.owl/o3> <http://ex.owl/o3-v1>

Import: <http://ex.owl/o4>
Import: <http://ex.owl/o5>
Annotations: rdfs:comment "An example ontology"@en,

:creator :John
AnnotationProperty: :creator
Individual: :John

An ontology is identified by
ontology IRI (http://ex.owl/o3) logically identifies an ontology

(although it might be stored e.g. in a local file)
version IRI (http://ex.owl/o3-v1) which is optional

Import: allows importing other ontologies (for backward
compatibility with OWL 1, the imported ontology is syntactically
included in case it has no Ontology: header)
Annotations: allows arbitrary ontology annotations (creators,
comments, backward compatibility, etc.)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 15 / 43

Web Ontology Language

DL Syntax vs. Manchester Syntax vs. Turtle

DL
FatherOfSons v ∃hasChild · > u ∀hasChild ·Man
OWL Manchester Syntax

Class: :FatherOfSons
SubClassOf: :hasChild some owl:Thing and :hasChild only :Man

OWL / RDF serialization in Turtle
:FatherOfSons rdf:type owl:Class ;

rdfs:subClassOf [rdf:type owl:Class ;
owl:intersectionOf ([rdf:type owl:Restriction ;

owl:onProperty :hasChild ;
owl:someValuesFrom owl:Thing]

[rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:allValuesFrom :Man])

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 16 / 43

Web Ontology Language

Annotations

Each resource can be assigned a set of annotations (i.e. classes,
properties, reified axioms, or even annotations themselves):
Class: :FatherOfSons

Annotations:
:creator :John,
Annotations: :creator :Jack

rdfs:label "Father of sons"@en
SubClassOf:

Annotations: :creator :Mary
:hasChild some owl:Thing and :hasChild only :Man

Question
What do different creators refer to ?

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 17 / 43

Web Ontology Language

Punning

Should ex:Dog be considered a class (representing a set of dogs), or an
individual (representing a particular species) ?
Punning is the mechanism of reusing the same IRI for entities of different
type for the sake of metamodeling but certain typing constraints must be
fulfilled to stay in OWL 2 DL.

OWL 2 DL Typing constraints
All IRIs have to be declared to be either class, datatype, object
property, data property, annotation property, individual in the axiom
closure of an ontology
Each IRI can be (declared/used as) only one of (object property, data
property, annotation property)
Each IRI can be (declared/used as) only one of (class, datatype)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 18 / 43

Web Ontology Language

Punning example

Correct:
Individual: ex:Dog
Facts: ex:isExtinct false

Individual: ex:Lucky
Types: ex:Dog

Incorrect:
Individual: ex:John
Facts: ex:hasName ex:JohnsFirstName
Facts: ex:hasName "John"@en

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 19 / 43

Web Ontology Language

Property Expressions

... just inverse:
inverse :hasChild

Inverse property goes in the opposite direction. Inverse properties can be
used in class frames, property frames as well as individuals frames.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 20 / 43

Web Ontology Language

Object Property Frames
ObjectProperty: :hasMother

Characteristics: Functional, Irreflexive, Asymmetric
Domain: :Person
Range: :Woman
SubPropertyOf: :hasParent
EquivalentTo: inverse :isMotherOf
DisjointWith: :hasFather
InverseOf: :isMotherOf
SubPropertyChain: :hasFather o :isWifeOf

Characteristics – selection of Functional,InverseFunctional,
Transitive, Reflexive, Irreflexive, Symmetric,
Asymmetric – interpreted in their mathematical sense

Domain,Range have the same meaning as in RDFS
SubPropertyOf specifies props representing supersets of the frame property
EquivalentTo specifies props semantically equivalent to the frame class
DisjointWith specifies props disjoint with the frame property
InverseOf specifies inverse props (like inverse property expression)

SubPropertyChain specifies a property composition
Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 21 / 43

Web Ontology Language

Data Property Frames

DataProperty: :hasBirthNumber
Characteristics: Functional
Domain: :Person
Range: xsd:string
SubPropertyOf: :hasIdentifyingNumber

The only Characteristics available is Functional. Other sections have
the same meaning as for Object properties.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 22 / 43

Web Ontology Language

Basic Data Ranges

OWL 2 supports basic modeling constructs for custom data ranges:
and,or,not have the meaning of standard set intersection, union and

complement,
(xsd:nonNegativeInteger and xsd:nonPositiveInteger)

or xsd:string

individual enumeration lists individuals belonging to a class expression.
{"true"ˆˆxsd:boolean 1}

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 23 / 43

Web Ontology Language

Basic Data Ranges

OWL 2 supports basic modeling constructs for custom data ranges:
and,or,not have the meaning of standard set intersection, union and

complement,
(xsd:nonNegativeInteger and xsd:nonPositiveInteger)

or xsd:string

individual enumeration lists individuals belonging to a class expression.
{"true"ˆˆxsd:boolean 1}

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 23 / 43

Web Ontology Language

Facets

Facets restrict a particular datatype to a subset of its values.
xsd:integer[>= 5, < 10]

Available facets
length, minLength, maxLength – string lengths

pattern – string regular expression
langRange – range of language tags

<=,<,>=,> – number comparison

New datatypes can be used by means of datatype frame axioms:
Datatype: :MyNumber

EquivalentTo: xsd:integer[>= 5, < 10]

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 24 / 43

Web Ontology Language

Boolean operators

OWL 2 supports many class modeling constructs including boolean
connectives, individual enumeration, and object/data value restrictions.
owl:Thing, owl:Nothing are two predefined OWL classes containing

all (resp. no) individuals,

and,or,not have the meaning of standard set intersection, union and
complement,
(:FlyingObject and not :Bat) or :Pinguin

individual enumeration lists individuals belonging to a class expression.
{:John :Mary}

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 25 / 43

Web Ontology Language

Boolean operators

OWL 2 supports many class modeling constructs including boolean
connectives, individual enumeration, and object/data value restrictions.
owl:Thing, owl:Nothing are two predefined OWL classes containing

all (resp. no) individuals,
and,or,not have the meaning of standard set intersection, union and

complement,
(:FlyingObject and not :Bat) or :Pinguin

individual enumeration lists individuals belonging to a class expression.
{:John :Mary}

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 25 / 43

Web Ontology Language

Boolean operators

OWL 2 supports many class modeling constructs including boolean
connectives, individual enumeration, and object/data value restrictions.
owl:Thing, owl:Nothing are two predefined OWL classes containing

all (resp. no) individuals,
and,or,not have the meaning of standard set intersection, union and

complement,
(:FlyingObject and not :Bat) or :Pinguin

individual enumeration lists individuals belonging to a class expression.
{:John :Mary}

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 25 / 43

Web Ontology Language

Object value Restrictions (1)

existential quantification says that a property filler exists (not necessarily
in data !)
:hasChild some :Man

universal quantification says that each property filler belongs to a class
:hasChild only :Man

cardinality restriction restricts the number of property fillers
:hasPart exactly 2 :Wheel
:hasPart min 4 :Wheel
:hasPart max 1 :Wheel

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 26 / 43

Web Ontology Language

Object value Restrictions (1)

existential quantification says that a property filler exists (not necessarily
in data !)
:hasChild some :Man

universal quantification says that each property filler belongs to a class
:hasChild only :Man

cardinality restriction restricts the number of property fillers
:hasPart exactly 2 :Wheel
:hasPart min 4 :Wheel
:hasPart max 1 :Wheel

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 26 / 43

Web Ontology Language

Object value Restrictions (1)

existential quantification says that a property filler exists (not necessarily
in data !)
:hasChild some :Man

universal quantification says that each property filler belongs to a class
:hasChild only :Man

cardinality restriction restricts the number of property fillers
:hasPart exactly 2 :Wheel
:hasPart min 4 :Wheel
:hasPart max 1 :Wheel

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 26 / 43

Web Ontology Language

Object Value Restrictions (2)

individual value restriction restricts a property filler to a specified
individual
:hasChild value :John

self restriction restricts a property filler to the same individual
:trusts Self

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 27 / 43

Web Ontology Language

Object Value Restrictions (2)

individual value restriction restricts a property filler to a specified
individual
:hasChild value :John

self restriction restricts a property filler to the same individual
:trusts Self

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 27 / 43

Web Ontology Language

Complex Value Restrictions

analogous counterparts to the object value restrictions are available
(except the Self restriction) as data value restrictions:
:hasName some xsd:string[length 2]

What does this class expression describe ?

(:hasPart only (not :Tail))
and (:hasPart max 2 (:hasPart some :Knee))
and (:doesAssignmentWith Self)
and (:hasGrade only xsd:string[pattern "[AB]"])

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 28 / 43

Web Ontology Language

Class frames
Class: :Father
SubClassOf: :Parent
EquivalentTo: :Man and :hasChild some :Person
DisjointWith: :Mother
DisjointUnionOf: :HappyFather :SadFather
HasKey: :hasBirthNumber

SubClassOf section defines axioms specifying supersets of the frame class
EquivalentTo section defines axioms specifying classes semantically

equivalent to the frame class
DisjointWith section defines classes sharing no individuals with the frame

class
DisjointUnionOf section defines classes that are mutually disjoint and

union of which is semantically equivalent to the frame class
HasKey section defines a set of properties that build up a key for the

class – all instances of Father sharing the same value for
the key (:hasBirthNumber) are semantically identical
(owl:sameAs)Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 29 / 43

Web Ontology Language

Individual Frames

Individual: :John
Types: :Person , :hasName value "Johnny"
Facts: :hasChild :Jack, not :hasName "Bob"
SameAs: :Johannes
DifferentFrom: :Jack

Individual frames contain assertions, subject of which is the individual.
Types specifies class descriptions that are types (rdf:type) for

the frame individual,
Facts specifies the object and data property assertions,

SameAs specifies individuals being semantically identical to the frame
individual,

DifferentFrom specifies individuals being semantically different to the
frame individual

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 30 / 43

Web Ontology Language

Unique Name Assumption

OWL does not accept unique name assumption, i.e. it is not known
whether two individuals :John and :Jack represent the same object, or
not. By SameAs and DifferentFrom, either possibility can be
enforced.
Individual: :John
Types: :hasChild exactly 1 owl:Thing
Facts: :hasChild :Jack, :hasChild :Jim

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 31 / 43

Web Ontology Language

Global Constraints
We have discussed the typing constraints. Additionally, there are syntactic
constraints that ensure decidability of reasoning. These constraints must
be fulfilled for each OWL 2 DL ontology:
simple object property are properties that have no direct or indirect

(through property hierarchy) subproperties that are transitive
or defined by means of a property chain.

ObjectProperty: :hasChild
SubPropertyOf: :hasDescendant

ObjectProperty: :hasDescendant
Characteristics: Transitive
SubPropertyOf: :hasRelative

ObjectProperty: :hasSon
SubPropertyOf: :hasChild

ObjectProperty: :hasDaughter
SubPropertyOf: :hasChild

ObjectProperty: :hasUncle
SubPropertyOf: :hasRelative
SubPropertyChain: :hasParent o :hasSibling

Figure: White properties
are simple, blue ones are
not.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 32 / 43

Web Ontology Language

Global Constraints (2)

Formal specification is in [Patel-Schneider:12:OWOSS], informally:
owl:topDataProperty cannot be stated equal to any other data
property (e.g. through EquivalentTo or SubPropertyOf).
datatype definitions must be acyclic
the following constructs are only allowed with simple properties:

cardinality restrictions (min, max, exactly),
self restriction ((Self)),
property characteristics Functional, InverseFunctional,
Irreflexive,Asymmetric,
property axiom DisjointWith

property chains must not be cyclic
(restriction on anonymous individuals (that we haven’t discussed))

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 33 / 43

Web Ontology Language

SPARQL Evaluation Semantics

PREFIX : <http://ex.org/e1>
SELECT ?x
WHERE { ?x :madeFromFruit _:d }

Simple-entailment No result.

RDF-entailment No result.
RDFS-entailment One result: ?x=:ChateauDYchemSauterne.
OWL-entailment Two results: ?x=:ChateauDYchemSauterne and

?x=:BancroftChardonnay.
Individual: :BancroftChardonnay
Types: :Chardonnay

Class: :Chardonnay
SubClassOf: :madeFromGrape some owl:Thing

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 34 / 43

Web Ontology Language

SPARQL Evaluation Semantics

PREFIX : <http://ex.org/e1>
SELECT ?x
WHERE { ?x :madeFromFruit _:d }

Simple-entailment No result.
RDF-entailment No result.

RDFS-entailment One result: ?x=:ChateauDYchemSauterne.
OWL-entailment Two results: ?x=:ChateauDYchemSauterne and

?x=:BancroftChardonnay.
Individual: :BancroftChardonnay
Types: :Chardonnay

Class: :Chardonnay
SubClassOf: :madeFromGrape some owl:Thing

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 34 / 43

Web Ontology Language

SPARQL Evaluation Semantics

PREFIX : <http://ex.org/e1>
SELECT ?x
WHERE { ?x :madeFromFruit _:d }

Simple-entailment No result.
RDF-entailment No result.
RDFS-entailment One result: ?x=:ChateauDYchemSauterne.

OWL-entailment Two results: ?x=:ChateauDYchemSauterne and
?x=:BancroftChardonnay.
Individual: :BancroftChardonnay
Types: :Chardonnay

Class: :Chardonnay
SubClassOf: :madeFromGrape some owl:Thing

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 34 / 43

Web Ontology Language

SPARQL Evaluation Semantics

PREFIX : <http://ex.org/e1>
SELECT ?x
WHERE { ?x :madeFromFruit _:d }

Simple-entailment No result.
RDF-entailment No result.
RDFS-entailment One result: ?x=:ChateauDYchemSauterne.
OWL-entailment Two results: ?x=:ChateauDYchemSauterne and

?x=:BancroftChardonnay.
Individual: :BancroftChardonnay
Types: :Chardonnay

Class: :Chardonnay
SubClassOf: :madeFromGrape some owl:Thing

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 34 / 43

Web Ontology Language OWL Profiles

OWL Profiles

1 How to extend ALC?

2 Web Ontology Language
OWL Profiles
Advanced Material (Optional)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 35 / 43

Web Ontology Language OWL Profiles

OWL (2) Language Family

OWL (Full) interprets any RDF graph
under OWL-RDF entailment
regime (undecidable).

OWL 2 DL interprets OWL 2 ontologies
(parsed only from compliant
RDF graphs) by means of
decidable SROIQ
description logic semantics,

OWL 2 EL is a subset of OWL 2 DL for
rich class taxonomies,

OWL 2 QL is a subset of OWL 2 DL for
large data,

OWL 2 RL is a subset of OWL 2 DL with
weaker rule-based semantic.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 36 / 43

Web Ontology Language OWL Profiles

OWL 2 EL

∼ EL++ description logic
all axioms are limited to these class constructors ∃R · C , ∃R · {I},
∃R · Self , C u D
inverse properties not allowed
unavailable axioms:

Dis(R, Q),
reflexive / functional / inverse functional / symmetric role R

the most useful reasoning procedure is subsumption checking
(polynomial time)
e.g. for SNOMED-CT

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 37 / 43

Web Ontology Language OWL Profiles

OWL 2 QL

∼ DL-LiteR description logic
allowed subclasses1 – A, ∃R · >,
allowed superclasses – C u D, ¬C , ∃R · C
unavailable axioms:

R v S (subproperties),
functional / inverse functional / transitive R,
individual equality assertions,
negative property assertions,

the most useful reasoning procedure is query answering – done by
means of rewriting a conjunctive query into a set of database (SQL)
queries (LOGSPACE)

1Note this also applies “syntactic sugar axioms” – equivalent classes, disjoint classes,
etc.

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 38 / 43

Web Ontology Language OWL Profiles

OWL 2 RL

∼ rule-based semantics of OWL 2 DL axioms
allowed subclasses – {I}, C u D, C t D, ∃R · C
allowed superclasses – C u D, ¬C , ∃R · C , ∀R · C , (≤ 1 R C)
unavailable axioms – disjoint unions, reflexive object properties
expressive, yet efficient reasoning – traded for weakened (rule-based)
semantics of the constructs and axioms

no non-deterministic reasoning
no generation of new individuals

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 39 / 43

Web Ontology Language Advanced Material (Optional)

Advanced Material (Optional)

1 How to extend ALC?

2 Web Ontology Language
OWL Profiles
Advanced Material (Optional)

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 40 / 43

Web Ontology Language Advanced Material (Optional)

OWL 2 RDF-Based Semantics

defines an entailment |=OWL2−RDF) allowing to interpret all RDF graphs
(called OWL 2 Full)

is an extension of D-entailment (inteprets the whole RDF graph)
undecidable, but incomplete entailment rules are provided
[Schneider:12:OWO]

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://example.org/2014-osw-l4/>.
_:y a owl:Ontology .
_:x rdfs:subClassOf :Parent ;

a owl:Restriction ;
:hasChild a owl:ObjectProperty .
:John :hasChild :Mary .

@prefix : <http://www.example.org/2014-osw-l4/> .
:hasChild a rdf:Property .
:Mary a owl:NamedIndividual .

The following entailment holds:

G1 |=OWL2−RDF G2

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 41 / 43

Web Ontology Language Advanced Material (Optional)

OWL 2 Direct Semantics

defines an entailment |=OWL2−DL in terms of the SROIQ(D) DL.
interprets only “logically-backed” knowledge, while ignoring the rest
(e.g. annotations, declarations, etc.)
F (G) is an OWL 2 DL ontology, for G sat. OWL 2 DL restrictions.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://example.org/2014-osw-l4/>.
_:y a owl:Ontology .
_:x rdfs:subClassOf :Parent ;

a owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom owl:Thing .

:John :hasChild :Mary .
:John a owl:NamedIndividual .
:Mary a owl:NamedIndividual .
:hasChild a owl:ObjectProperty .

@prefix : <http://www.example.org/2014-osw-l4/> .
:John a :Parent .
:John rdfs:label "john"@en .

The following entailment holds:

F (G3) |=OWL2−DL F (G4)

(For the sake of brevity, F (•) is often
omitted whenever G is a serialization of
an OWL-DL ontology F (G))

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 42 / 43

Web Ontology Language Advanced Material (Optional)

OWL 2 Correspondence Theorem (CT)
direct and RDF-based semantics for OWL are different (i.e. there
exist entailments valid for one semantic and not for the other one)
CT says that OWL RDF semantic can express anything that
OWL DL semantics can

OWL 2 Correspondence Theorem – simplified version
For any two RDF graphs G1 and G2, there exist two RDF graphs G ′1 and
G ′2, s.t. F (G1) |=|OWL−DL F (G ′1) and F (G2) |=|OWL2−DL F (G ′2), and

F (G ′1) |=OWL2−DL F (G ′2) implies G ′1 |=OWL2−RDF G ′2,

where F (G) is an OWL-DL ontology corresponding to the RDF graph G .

For example G1 2OWL2−DL G2, while G3 2OWL2−RDF G4

Removing last triple (label) from G4, we get G ′4, s.t.
F (G4) |=|OWL−DL F (G ′4) and G4 |=OWL−RDF G ′4

Petr Křemen (petr.kremen@fel.cvut.cz) Towards the Web Ontology Language (OWL) Winter 2021 43 / 43

	How to extend ALC?
	Web Ontology Language
	OWL Profiles
	Advanced Material (Optional)

