
1 Towards Web Ontology Language

1.1 How to extend ALC?

Extending ALC

• We have introduced ALC. Its expressiveness is higher than the expressiveness
of the propositional calculus, still it lacks many constructs needed for practical
applications.

• Let’s take a look, how to extend ALC while preserving decidability.

Extending ALC (2)

N (Number restructions) are used for restricting the number of successors in the given
role for the given concept.

concept D its interpretation DI

(≥ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}∣∣∣ ≥ n }

(≤ n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}∣∣∣ ≤ n }

(= n R)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI}∣∣∣ = n

}

Example

– Concept Woman u (≤ 3 hasChild) denotes women who have at most 3 chil-
dren.

– What denotes the axiom Car v (≥ 4 hasWheel) ?

– ... and Bicycle ≡ (= 2 hasWheel) ?

Extending ALC (3)

Q (Qualified number restrictions) are used for restricting the number of successors of
the given type in the given role for the given concept.

1

1 Towards Web Ontology Language

concept D its interpretation DI

(≥ n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}∣∣∣ ≥ n }

(≤ n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}∣∣∣ ≤ n }

(= n R C)

{
a

∣∣∣∣ ∣∣∣{b | (a, b) ∈ RI ∧ bI ∈ CI}∣∣∣ = n

}

Example

– Concept Womanu (≥ 3 hasChild Man) denotes women who have at least 3
sons.

– What denotes the axiom Car v (≥ 4 hasPart Wheel) ?

– Which qualified number restrictions can be expressed in ALC ?

Extending ALC (4)

O (Nominals) can be used for naming a concept elements explicitely.
concept D its interpretation DI

{a1, . . . , an} {aI1 , . . . , aIn}

Example

– Concept {MALE, FEMALE} denotes a gender concept that must be inter-
preted with at most two elements. Why at most ?

– Continent ≡ {EUROPE, ASIA, AMERICA, AUSTRALIA, AFRICA, ANTARCTICA}
?

Extending ALC (5)

I (Inverse roles) are used for defining role inversion.
role S its interpretation SI

R− (RI)−1

Example

– Role hasChild− denotes the relationship hasParent.

– What denotes axiom Person v (= 2 hasChild−) ?

– What denotes axiom Person v ∃hasChild− · ∃hasChild · > ?

Extending ALC (6)

2

1.1 How to extend ALC?

·trans (Role transitivity axiom) denotes that a role is transitive. Attention – it is not a
transitive closure operator.

axiom α I |= α iff
trans(R) RI is transitive

Example
– Role isPartOf can be defined as transitive, while role hasParent is not.

What about roles hasPart, hasPart−, hasGrandFather− ?
– What is a transitive closure of a relationship ? What is the difference between

a transitive closure of hasDirectBossI and hasBossI .

Extending ALC (7)

H (Role hierarchy) serves for expressing role hierarchies (taxonomies) – similarly to
concept hierarchies.

axiom α I |= α iff
R v S RI ⊆ SI

Example
– Role hasMother can be defined as a special case of the role hasParent.
– What is the difference between a concept hierarchy Mother v Parent and

role hierarchy hasMother v hasParent.

Extending ALC (8)

R (role extensions) serve for defining expressive role constructs, like role chains, role
disjunctions, etc.

axiom α I |= α iff
R ◦ S v P RI ◦ SI v P I

Dis(R,S) RI ∩ SI = ∅
∃R · Self {a|(a, a) ∈ RI}

Example
– How would you define the role hasUncle by means of hasSibling and hasParent

?
– how to express that R is transitive, using a role chain ?
– Whom does the following concept denote Person u ∃likes · Self ?

Syntactic Sugar

• R is functional means > v (≤ 1 R),

• R is inverse functional means > v
(
≤ 1 R−1)

3

1 Towards Web Ontology Language

• R is reflexive means > v ∃R · Self ,

• R is irreflexive means ∃R · Self v ⊥,

• R is symmetric means R v R−1,

• R is asymmetric means Dis(R, R−1),

• R is transitive means R ◦R v R

• I = J means {I} v {J} (individual equality assertions)

• I 6= J means {I} v ¬{J} (individual equality assertions)

• ¬R(I, J) means {I} v ¬∃R · {J} (negative property assertions)

Other extensions

Modal Logic introduces modal operators – possibility/necessity, used in multiagent systems.

Example

• (� represents e.g. the ”believe” operator of an agent)

�(Man v P erson u ∀hasF ather ·Man) (1.1)

• As ALC is a syntactic variant to a multi-modal propositional logic, where each role represents the
accessibility relation between worlds in Kripke structure, the previous example can be transformed
to the modal logic as:

•
�(Man =⇒ P erson ∧ �hasF atherMan) (1.2)

Vague Knowledge - fuzzy, probabilistic and possibilistic extensions

Data Types (D) allow integrating a data domain (numbers, strings), e.g. P erson u ∃hasAge · 23 represents the
concept describing “23-years old persons”.

1.2 Web Ontology Language
Description logics behind OWL

• From the previously introduced extensions, two prominent decidable supersets of
ALC can be constructed:

– SHOIN is a description logics that backs OWL-DL.
– SROIQ is a description logics that backs OWL2-DL.
– Both OWL-DL and OWL2-DL are semantic web languages – they extend the

corresponding description logics by:
syntactic sugar – axioms NegativeObjectPropertyAssertion, AllDisjoint, etc.
extralogical constructs – imports, annotations
data types – XSD datatypes are used

4

1.2 Web Ontology Language

From DL to OWL
All entities (concepts/roles/individuals) are identified by IRIs.

Prefix: : <http://ex.owl/>
Ontology: <http://ex.owl/o1>
ObjectProperty: :hasChild
Class: :Man
Class: :FatherOfSons

SubClassOf: :hasChild some owl:Thing and :hasChild only :Man
Individual: :John

Types: :FatherOfSons

classes – DL concepts (e.g. ex:Man, ex:Employee, etc.)

individuals – DL individuals (e.g. ex:John)

object/data properties – DL roles (e.g. ex:hasChild) / data roles (e.g. ex:hasName)

OWL namespace is http://www.w3.org/2002/07/owl#, prefixed as owl:.

OWL Ontology Header

Prefix: : <http://ex.owl/>
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#>
Ontology: <http://ex.owl/o3> <http://ex.owl/o3-v1>
Import: <http://ex.owl/o4>
Import: <http://ex.owl/o5>
Annotations: rdfs:comment "An example ontology"@en,

:creator :John
AnnotationProperty: :creator
Individual: :John

• An ontology is identified by
ontology IRI (http://ex.owl/o3) logically identifies an ontology (although it

might be stored e.g. in a local file)
version IRI (http://ex.owl/o3-v1) which is optional

• Import: allows importing other ontologies (for backward compatibility with
OWL 1, the imported ontology is syntactically included in case it has no Ontology:
header)

• Annotations: allows arbitrary ontology annotations (creators, comments, back-
ward compatibility, etc.)

DL Syntax vs. Manchester Syntax vs. Turtle

• DL
FatherOfSons v ∃hasChild · > u ∀hasChild ·Man

• OWL Manchester Syntax

5

1 Towards Web Ontology Language

Class: :FatherOfSons
SubClassOf: :hasChild some owl:Thing and :hasChild only :Man

• OWL / RDF serialization in Turtle
:FatherOfSons rdf:type owl:Class ;

rdfs:subClassOf [rdf:type owl:Class ;
owl:intersectionOf ([rdf:type owl:Restriction ;

owl:onProperty :hasChild ;
owl:someValuesFrom owl:Thing]

[rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:allValuesFrom :Man])

Annotations
Each resource can be assigned a set of annotations (i.e. classes, properties, reified

axioms, or even annotations themselves):

Class: :FatherOfSons
Annotations:

:creator :John,
Annotations: :creator :Jack

rdfs:label "Father of sons"@en
SubClassOf:

Annotations: :creator :Mary
:hasChild some owl:Thing and :hasChild only :Man

Question
What do different creators refer to ?

Punning
Should ex:Dog be considered a class (representing a set of dogs), or an individual

(representing a particular species) ?
Punning is the mechanism of reusing the same IRI for entities of different type for

the sake of metamodeling but certain typing constraints must be fulfilled to stay in OWL
2 DL.

OWL 2 DL Typing constraints

• All IRIs have to be declared to be either class, datatype, object property, data
property, annotation property, individual in the axiom closure of an ontology

• Each IRI can be (declared/used as) only one of (object property, data property,
annotation property)

• Each IRI can be (declared/used as) only one of (class, datatype)

6

1.2 Web Ontology Language

Punning example
Correct:

Individual: ex:Dog
Facts: ex:isExtinct false

Individual: ex:Lucky
Types: ex:Dog

Incorrect:

Individual: ex:John
Facts: ex:hasName ex:JohnsFirstName
Facts: ex:hasName "John"@en

Property Expressions
... just inverse:

inverse :hasChild

Inverse property goes in the opposite direction. Inverse properties can be used in class
frames, property frames as well as individuals frames.

Object Property Frames

ObjectProperty: :hasMother
Characteristics: Functional, Irreflexive, Asymmetric
Domain: :Person
Range: :Woman
SubPropertyOf: :hasParent
EquivalentTo: inverse :isMotherOf
DisjointWith: :hasFather
InverseOf: :isMotherOf
SubPropertyChain: :hasFather o :isWifeOf

Characteristics – selection of Functional,InverseFunctional, Transitive, Reflexive,
Irreflexive, Symmetric, Asymmetric – interpreted in their mathematical sense

Domain,Range have the same meaning as in RDFS

SubPropertyOf specifies props representing supersets of the frame property

EquivalentTo specifies props semantically equivalent to the frame class

DisjointWith specifies props disjoint with the frame property

InverseOf specifies inverse props (like inverse property expression)

SubPropertyChain specifies a property composition

7

1 Towards Web Ontology Language

Data Property Frames

DataProperty: :hasBirthNumber
Characteristics: Functional
Domain: :Person
Range: xsd:string
SubPropertyOf: :hasIdentifyingNumber

The only Characteristics available is Functional. Other sections have the same
meaning as for Object properties.

Basic Data Ranges
OWL 2 supports basic modeling constructs for custom data ranges:

and,or,not have the meaning of standard set intersection, union and complement,
(xsd:nonNegativeInteger and xsd:nonPositiveInteger)

or xsd:string

individual enumeration lists individuals belonging to a class expression.
{"true"ˆˆxsd:boolean 1}

Facets
Facets restrict a particular datatype to a subset of its values.

xsd:integer[>= 5, < 10]

Available facets

length, minLength, maxLength – string lengths

pattern – string regular expression

langRange – range of language tags

<=,<,>=,> – number comparison

New datatypes can be used by means of datatype frame axioms:

Datatype: :MyNumber
EquivalentTo: xsd:integer[>= 5, < 10]

8

1.2 Web Ontology Language

Boolean operators
OWL 2 supports many class modeling constructs including boolean connectives, indi-

vidual enumeration, and object/data value restrictions.

owl:Thing, owl:Nothing are two predefined OWL classes containing all (resp. no)
individuals,

and,or,not have the meaning of standard set intersection, union and complement,

(:FlyingObject and not :Bat) or :Pinguin

individual enumeration lists individuals belonging to a class expression.

{:John :Mary}

Object value Restrictions (1)

existential quantification says that a property filler exists (not necessarily in data !)

:hasChild some :Man

universal quantification says that each property filler belongs to a class

:hasChild only :Man

cardinality restriction restricts the number of property fillers

:hasPart exactly 2 :Wheel
:hasPart min 4 :Wheel
:hasPart max 1 :Wheel

Object Value Restrictions (2)

individual value restriction restricts a property filler to a specified individual

:hasChild value :John

self restriction restricts a property filler to the same individual

:trusts Self

9

1 Towards Web Ontology Language

Complex Value Restrictions

• analogous counterparts to the object value restrictions are available (except the
Self restriction) as data value restrictions:

:hasName some xsd:string[length 2]

What does this class expression describe ?

(:hasPart only (not :Tail))
and (:hasPart max 2 (:hasPart some :Knee))
and (:doesAssignmentWith Self)
and (:hasGrade only xsd:string[pattern "[AB]"])

Class frames

Class: :Father
SubClassOf: :Parent
EquivalentTo: :Man and :hasChild some :Person
DisjointWith: :Mother
DisjointUnionOf: :HappyFather :SadFather
HasKey: :hasBirthNumber

SubClassOf section defines axioms specifying supersets of the frame class

EquivalentTo section defines axioms specifying classes semantically equivalent to the
frame class

DisjointWith section defines classes sharing no individuals with the frame class

DisjointUnionOf section defines classes that are mutually disjoint and union of which
is semantically equivalent to the frame class

HasKey section defines a set of properties that build up a key for the class – all in-
stances of Father sharing the same value for the key (:hasBirthNumber) are
semantically identical (owl:sameAs)

Individual Frames

Individual: :John
Types: :Person , :hasName value "Johnny"
Facts: :hasChild :Jack, not :hasName "Bob"
SameAs: :Johannes
DifferentFrom: :Jack

10

1.2 Web Ontology Language

Individual frames contain assertions, subject of which is the individual.

Types specifies class descriptions that are types (rdf:type) for the frame individual,

Facts specifies the object and data property assertions,

SameAs specifies individuals being semantically identical to the frame individual,

DifferentFrom specifies individuals being semantically different to the frame individ-
ual

Unique Name Assumption
OWL does not accept unique name assumption, i.e. it is not known whether two

individuals :John and :Jack represent the same object, or not. By SameAs and
DifferentFrom, either possibility can be enforced.

Individual: :John
Types: :hasChild exactly 1 owl:Thing
Facts: :hasChild :Jack, :hasChild :Jim

Global Constraints
We have discussed the typing constraints. Additionally, there are syntactic constraints

that ensure decidability of reasoning. These constraints must be fulfilled for each OWL
2 DL ontology:

simple object property are properties that have no direct or indirect (through property
hierarchy) subproperties that are transitive or defined by means of a property
chain.

ObjectProperty: :hasChild
SubPropertyOf: :hasDescendant

ObjectProperty: :hasDescendant
Characteristics: Transitive
SubPropertyOf: :hasRelative

ObjectProperty: :hasSon
SubPropertyOf: :hasChild

ObjectProperty: :hasDaughter
SubPropertyOf: :hasChild

ObjectProperty: :hasUncle
SubPropertyOf: :hasRelative
SubPropertyChain: :hasParent o :hasSibling

Global Constraints (2)
Formal specification is in [Patel-Schneider:12:OWOSS], informally:

• owl:topDataProperty cannot be stated equal to any other data property (e.g.
through EquivalentTo or SubPropertyOf).

11

1 Towards Web Ontology Language

Figure 1.1: White properties are simple, blue ones are not.

12

1.2 Web Ontology Language

• datatype definitions must be acyclic

• the following constructs are only allowed with simple properties:
– cardinality restrictions (min, max, exactly),
– self restriction ((Self)),
– property characteristics Functional, InverseFunctional, Irreflexive,Asymmetric,
– property axiom DisjointWith

• property chains must not be cyclic

• (restriction on anonymous individuals (that we haven’t discussed))

SPARQL Evaluation Semantics

PREFIX : <http://ex.org/e1>
SELECT ?x
WHERE { ?x :madeFromFruit _:d }

Simple-entailment No result.

RDF-entailment No result.

RDFS-entailment One result: ?x=:ChateauDYchemSauterne.

OWL-entailment Two results: ?x=:ChateauDYchemSauterne and ?x=:BancroftChardonnay.
Individual: :BancroftChardonnay
Types: :Chardonnay

Class: :Chardonnay
SubClassOf: :madeFromGrape some owl:Thing

13

1 Towards Web Ontology Language

1.2.1 OWL Profiles

OWL (2) Language Family

OWL (Full) interprets any RDF graph under OWL-RDF entailment regime (undecid-
able).

OWL 2 DL interprets OWL 2 ontologies (parsed only from compliant RDF graphs)
by means of decidable SROIQ description logic semantics,

OWL 2 EL is a subset of OWL 2 DL for rich class taxonomies,

OWL 2 QL is a subset of OWL 2 DL for large data,

OWL 2 RL is a subset of OWL 2 DL with weaker rule-based semantic.

14

1.2 Web Ontology Language

OWL 2 EL
∼ EL++ description logic

• all axioms are limited to these class constructors ∃R ·C, ∃R · {I}, ∃R ·Self , C uD

15

1 Towards Web Ontology Language

• inverse properties not allowed

• unavailable axioms:

– Dis(R, Q),

– reflexive / functional / inverse functional / symmetric role R

• the most useful reasoning procedure is subsumption checking (polynomial time)

• e.g. for SNOMED-CT

OWL 2 QL
∼ DL-LiteR description logic

• allowed subclasses1 – A, ∃R · >,

• allowed superclasses – C uD, ¬C, ∃R · C

• unavailable axioms:

– R v S (subproperties),

– functional / inverse functional / transitive R,

– individual equality assertions,

– negative property assertions,

• the most useful reasoning procedure is query answering – done by means of
rewriting a conjunctive query into a set of database (SQL) queries (LOGSPACE)

OWL 2 RL
∼ rule-based semantics of OWL 2 DL axioms

• allowed subclasses – {I}, C uD, C tD, ∃R · C

• allowed superclasses – C uD, ¬C, ∃R · C, ∀R · C, (≤ 1 R C)

• unavailable axioms – disjoint unions, reflexive object properties

• expressive, yet efficient reasoning – traded for weakened (rule-based) semantics of
the constructs and axioms

– no non-deterministic reasoning

– no generation of new individuals
1Note this also applies “syntactic sugar axioms” – equivalent classes, disjoint classes, etc.

16

1.2 Web Ontology Language

1.2.2 Advanced Material (Optional)
OWL 2 RDF-Based Semantics

defines an entailment |=OW L2−RDF) allowing to interpret all RDF graphs (called
OWL 2 Full)

• is an extension of D-entailment (inteprets the whole RDF graph)

• undecidable, but incomplete entailment rules are provided [Schneider:12:OWO]

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://example.org/2014-osw-l4/>.
_:y a owl:Ontology .
_:x rdfs:subClassOf :Parent ;

a owl:Restriction ;
:hasChild a owl:ObjectProperty .
:John :hasChild :Mary .

@prefix : <http://www.example.org/2014-osw-l4/> .
:hasChild a rdf:Property .
:Mary a owl:NamedIndividual .

The following entailment holds:

G1 |=OW L2−RDF G2

OWL 2 Direct Semantics
defines an entailment |=OW L2−DL in terms of the SROIQ(D) DL.

• interprets only “logically-backed” knowledge, while ignoring the rest (e.g. an-
notations, declarations, etc.)

• F (G) is an OWL 2 DL ontology, for G sat. OWL 2 DL restrictions.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix : <http://example.org/2014-osw-l4/>.
_:y a owl:Ontology .
_:x rdfs:subClassOf :Parent ;

a owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom owl:Thing .

:John :hasChild :Mary .
:John a owl:NamedIndividual .
:Mary a owl:NamedIndividual .
:hasChild a owl:ObjectProperty .

@prefix : <http://www.example.org/2014-osw-l4/> .
:John a :Parent .
:John rdfs:label "john"@en .

The following entailment holds:

F (G3) |=OW L2−DL F (G4)

(For the sake of brevity, F (•) is often omitted whenever G is a serialization of an OWL-DL
ontology F (G))

17

1 Towards Web Ontology Language

OWL 2 Correspondence Theorem (CT)

• direct and RDF-based semantics for OWL are different (i.e. there exist entailments
valid for one semantic and not for the other one)

• CT says that OWL RDF semantic can express anything that OWL DL
semantics can

OWL 2 Correspondence Theorem – simplified version
For any two RDF graphs G1 and G2, there exist two RDF graphs G′1 and G′2, s.t.
F (G1) |=|OW L−DL F (G′1) and F (G2) |=|OW L2−DL F (G′2), and

F (G′1) |=OW L2−DL F (G′2) implies G′1 |=OW L2−RDF G′2,

where F (G) is an OWL-DL ontology corresponding to the RDF graph G.

• For example G1 2OW L2−DL G2, while G3 2OW L2−RDF G4

• Removing last triple (label) from G4, we get G′4, s.t. F (G4) |=|OW L−DL F (G′4) and
G4 |=OW L−RDF G′4

18

	Towards Web Ontology Language
	How to extend ALC?
	Web Ontology Language
	OWL Profiles
	Advanced Material (Optional)

