
1 Description Logics

1.1 What can we conclude from description logics?
Which clinical findings can occur on a head?

How: Get subclasses of Finding u ∃FindingSite ·Head

e.g. Heavyhead, resulting from
Headache ≡ Pain u ∃FindingSite ·Head
Pain v Finding
HeavyHead v Headache

Which properties do I have to fill in when recording an allergic head?
How: For each property p check AllergicHead v ∃p · T

e.g. FindingSite, resulting from
Pain v ∃FindingSite · T
ImmuneFunctionDisorder v ∃PathologicalProcess · T
AllergicHead v Pain
AllergicHead v ImmuneFunctionDisorder

Is a Headache occurring in a Leg correct?
How: Check satisfiability of the concept Headache u ∃FindingSite · Leg

No, because the concept is unsatisfiable, resulting from
Headache v Pain u ∃FindingSite ·Head
Pain v≤ 1FindingSite · T
Leg v ¬Head

Logical Consequence
For an arbitrary set S of axioms (resp. theory K = (T ,A), where S = T ∪ A) :

Model
I |= S if I |= α for all α ∈ S (I is a model of S, resp. K)

Logical Consequence
S |= β if I |= β whenever I |= S (β is a logical consequence of S, resp. K)

• S is consistent, if S has at least one model

1

1 Description Logics

1.2 Inference problems
Inference Problems in TBOX

We have introduced syntax and semantics of the language ALC. Now, let’s look on
automated reasoning. Having a ALC theory K = (T ,A). For TBOX T and concepts
C(i), we want to decide whether

(unsatisfiability) concept C is unsatisfiable, i.e. T |= C v ⊥ ?

(subsumption) concept C1 subsumes concept C2, i.e. T |= C2 v C1 ?

(equivalence) two concepts C1 and C2 are equivalent, i.e. T |= C1 ≡ C2 ?

(disjoint) two concepts C1 and C2 are disjoint, i.e. T |= C1 u C2 v ⊥ ?

All these tasks can be reduced to unsatisfiability checking of a single concept
...

Reducting Subsumption to Unsatisfiability

Example
These reductions are straighforward – let’s show, how to reduce subsumption checking
to unsatisfiability checking. Reduction of other inference problems to unsatisfiability is
analogous.

(T |= C1 v C2) iff
(∀I)(I |= T =⇒ I |= C1 v C2) iff
(∀I)(I |= T =⇒ CI1 ⊆ CI2) iff
(∀I)(I |= T =⇒ CI1 ∩ (∆I \ CI2) ⊆ ∅ iff
(∀I)(I |= T =⇒ I |= C1 u ¬C2 v ⊥ iff

(T |= C1 u ¬C2 v ⊥)

Inference Problems for ABOX

... and for ABOX A, axiom α, concept C, role R and individuals a(i) we want to decide
whether

(consistency checking) ABOX A is consistent w.r.t. T (in short if K is consistent).

(instance checking) T ∪ A |= C(a)?

(role checking) T ∪ A |= R(a1, a2)?

(instance retrieval) find all individuals a, for which T ∪ A |= C(a).

realization find the most specific concept C from a set of concepts, such that T ∪ A |=
C(a).

2

1.3 Inference Algorithms

All these tasks, as well as concept unsatisfiability checking, can be reduced
to consistency checking. Under which condition and how ?

Reduction of concept unsatisfiability to theory consistency

Example
Consider an ALC theory K = (T ,A), a concept C and a fresh individual af not occuring
in K:

(T |= C v ⊥) iff
(∀I)(I |= T =⇒ I |= C v ⊥) iff

(∀I)(I |= T =⇒ CI ⊆ ∅) iff
¬

[
(∃I)(I |= T ∧ CI * ∅)

]
iff

¬
[
(∃I)(I |= T ∧ aIf ∈ CI)

]
iff

(T , {C(af)}) is inconsistent

Note that for more expressive description logics than ALC, the ABOX has to be taken
into account as well due to its interaction with TBOX.

1.3 Inference Algorithms
Inference Algorithms in Description Logics

Structural Comparison is polynomial, but complete just for some simple DLs without
full negation, e.g. ALN , see [dlh2003].

Finite polynomial rule expansion – OWL-RL, OWL-EL

Tableaux Algorithms represent the State of Art for complex DLs – sound, complete,
finite

other ... – e.g. resolution-based, transformation to finite automata, etc.

We will introduce tableau algorithms.

Tableaux Algorithms
(TAs are not new in DL – they were known in predicate logics as well.)

Main idea
“ABOX A is consistent w.r.t. TBOX T if we find a model of T ∪A.” (similarly
for theory K as a whole)

Each TA can be seen as a production system :

state (∼ data base) containing a set of completion graphs (see next slides),

3

1 Description Logics

inference rules (∼ production rules) implement semantics of particular constructs of
the given language, e.g. ∃,u, etc. and serve to modify the completion graphs
accordingly

strategy for picking the most suitable rule for application

Completion Graphs
(Do not mix with complete graphs from the graph theory.)

Completion graph
is a labeled oriented graph G = (VG, EG, LG), where each

• node x ∈ VG is labeled with a set LG(x) of concepts and

• each edge 〈x, y〉 ∈ EG is labeled with a set of edges LG(〈x, y〉) (or shortly LG(x, y))

Completion Graphs

Direct Clash
occurs in a completion graph G = (VG, EG, LG)), if {A,¬A} ⊆ LG(x), or ⊥ ∈ LG(x) for
some atomic concept A and a node x ∈ VG

4

1.3 Inference Algorithms

Completion Graphs
Complete Completion Graph
is a completion graph G = (VG, EG, LG)), to which no inference rule can be applied (any
more).

1.3.1 Tableau Algorithm for ALC
Tableau Algorithm for ALC when T = ∅

Let’s have K = (T ,A), where T = ∅ for now.

0 (Preprocessing) Transform all concepts appearing in K to the “negational nor-
mal form” (NNF), “shifting” negation ¬ to the atomic concepts (using equivalent
operations known from propositional and predicate logics).

Example
¬(C1 u C2) is equivalent (de Morgan rules) to ¬C1 t ¬C2.

1 Initial state of the algorithm is S0 = {G0}, where G0 = (VG0 , EG0 , LG0) is made
up from A as follows:

– for each C(a) ∈ A put a ∈ VG0 and C ∈ LG0(a)
– for each R(a1, a2) ∈ A put 〈a1, a2〉 ∈ EG0 and R ∈ LG0(a1, a2)
– Sets VG0 , EG0 , LG0 are smallest possible with these properties.

Tableau algorithm for ALC without TBOX (2)
. . .

2 Current algorithm state is S. If each G ∈ S contains a direct clash, terminate as
“INCONSISTENT”.

3 Let’s choose one G ∈ S that doesn’t contain a direct clash. If G is complete w.r.t.
rules shown next, terminate as “CONSISTENT”

4 Find a rule that is applicable to G and apply it. As a result, we obtain from the
state S a new state S′. Jump to step 2.

5

1 Description Logics

TA for ALC without TBOX – Inference Rules

→u rule
if (C1 u C2) ∈ LG(a) and {C1, C2} * LG(a) for some a ∈ VG.

then S′ = S ∪ {G′} \ {G}, where G′ = (VG, EG, LG′), and LG′ (a) = LG(a) ∪ {C1, C2} and otherwise is
the same as LG.

→t rule
if (C1 t C2) ∈ LG(a) and {C1, C2} ∩ LG(a) = ∅ for some a ∈ VG.

then S′ = S ∪{G1, G2} \ {G}, where G(1|2) = (VG, EG, LG(1|2)), and LG(1|2) (a) = LG(a)∪{C(1|2)} and
otherwise is the same as LG.

→∃ rule
if (∃R · C) ∈ LG(a1) and there exists no a2 ∈ VG such that R ∈ LG(a1, a2) and at the same time

C ∈ LG(a2).
then S′ = S∪{G′}\{G}, where G′ = (VG∪{a2}, EG∪{〈a1, a2〉}, LG′), a LG′ (a2) = {C}, LG′ (a1, a2) =

{R} and otherwise is the same as LG.

→∀ rule
if (∀R · C) ∈ LG(a1) and there exists a2 ∈ VG such that R ∈ LG(a, a1) and at the same time

C /∈ LG(a2).
then S′ = S ∪{G′} \ {G}, where G′ = (VG, EG, LG′), and LG′ (a2) = LG(a2)∪{C} and otherwise is the

same as LG.

TA Run Example

Example – Consistency Checking
K2 = (∅,A2), where A2 = {(∃maDite · Muz u ∃maDite · Prarodic u ¬∃maDite ·
(Muz u Prarodic))(JAN)}).

• Let’s transform the concept into NNF: ∃maDite ·Muz u ∃maDite · Prarodic u
∀maDite · (¬Muz t ¬Prarodic)

• Initial state G0 of the TA is

TA Run Example (2)

Example 1. . . .

• Now, four sequences of steps 2,3,4 of the TA are performed. TA state in step 4,
evolves as follows:

• {G0}
u-rule−→ {G1}

∃-rule−→ {G2}
∃-rule−→ {G3}

∀-rule−→ {G4}, where G4 is

6

1.3 Inference Algorithms

TA Run Example (3)

Example 2. . . .

• By now, we applied just deterministic rules (we still have just a single completion
graph). At this point no other deterministic rule is applicable.

• Now, we have to apply the t-rule to the concept ¬Muz t ¬Rodic either in the
label of node “0”, or in the label of node “1”. Its application e.g. to node “1” we
obtain the state {G5, G6} (G5 left, G6 right)

TA Run Example (4)

Example 3. . . .

• We see that G5 contains a direct clash in node “1”. The only other option is to go
through the graph G6. By application of t-rule we obtain the state {G5, G7, G8},
where G7 (left), G8 (right) are derived from G6 :

7

1 Description Logics

• G7 is complete and without direct clash.

TA Run Example (5)

Example 4. . . . A canonical model I2 can be created from G7. Is it the only model of
K2 ?

• ∆I2 = {Jan, i1, i2},

• maDiteI2 = {〈Jan, i1〉, 〈Jan, i2〉},

• PrarodicI2 = {i1},

• MuzI2 = {i2},

• “JAN ′′I2 = Jan, “0′′I2 = i2, “1′′I2 = i1,

Finiteness
Finiteness of the TA is an easy consequence of the following:

• K is finite

• in each step, TA state can be enriched at most by one completion graph (only by
application of →t rule). Number of disjunctions (t) in K is finite, i.e. the t can
be applied just finite number of times.

• for each completion graph G = (VG, EG, LG) it holds that number of nodes in
VG is less or equal to the number of individuals in A plus number of existential
quantifiers in A.

• after application of any of the following rules →u,→∃,→∀ graph G is either en-
riched with a new node, new edge, or labeling of an existing node/edge is enriched.
All these operations are finite.

8

1.3 Inference Algorithms

Relation between ABOXes and Completion Graphs
We define also I |= G iff I |= AG, where AG is an ABOX constructed from G, as

follows
• C(a) for each node a ∈ VG and each concept C ∈ LG(a) and

• R(a1, a2) for each edge 〈a1, a2〉 ∈ EG and each role R ∈ LG(a1, a2)

Soundness

• Soundness of the TA can be verified as follows. For any I |= AGi , it must hold that
I |= AGi+1 . We have to show that application of each rule preserves consistency.
As an example, let’s take the →∃ rule:

– Before application of →∃ rule, (∃R · C) ∈ LGi(a1) held for a1 ∈ VGi .
– As a result aI1 ∈ (∃R · C)I .
– Next, i ∈ ∆I must exist such that 〈aI1 , i〉 ∈ RI and at the same time i ∈ CI .
– By application of →∃ a new node a2 was created in Gi+1 and the label of

edge 〈a1, a2〉 and node a2 has been adjusted.
– It is enough to place i = aI2 to see that after rule application the domain

element (necessary present in any interpretation because of ∃ construct se-
mantics) has been “materialized”. As a result, the rule is correct.

• For other rules, the soundness is shown in a similar way.

Completeness

• To prove completeness of the TA, it is necessary to construct a model for each
complete completion graph G that doesn’t contain a direct clash. Canonical model
I can be constructed as follows:

– the domain ∆I will consist of all nodes of G.
– for each atomic concept A let’s define AI = {a | A ∈ LG(a)}
– for each atomic role R let’s define RI = {〈a1, a2〉 | R ∈ LG(a1, a2)}

• Observe that I is a model of AG. A backward induction can be used to show that
I must be also a model of each previous step and thus also A.

A few remarks on TAs

• Why we need completion graphs ? Aren’t ABOXes enough to maintain the state
for TA ?

– indeed, for ALC they would be enough. However, for complex DLs a TA state
cannot be stored in an ABOX.

• What about complexity of the algorithm ?
– P-SPACE (between NP and EXP-TIME).

9

1 Description Logics

What if T is not empty?

• consider T containing axioms of the form Ci v Di for 1 ≤ i ≤ n. Such T can be
transformed into a single axiom

> v >C

where >C denotes a concept (¬C1 tD1) u . . . u (¬Cn tDn)

• for each model I of the theory K, each element of ∆I must belong to >IC . How to
achieve this ?

General Inclusions (2)

What about this ?

→v rule

if >C /∈ LG(a) for some a ∈ VG.

then S′ = S ∪ {G′} \ {G}, where G′ = (VG, EG, LG′), a LG′ (a) = LG(a) ∪ {>C} and otherwise is the
same as LG.

Example

Consider K3 = ({Muz v ∃maRodice·Muz},A2). Then >C is ¬Muzt∃maRodice·
Muz. Let’s use the introduced TA enriched by →v rule. Repeating several times
the application of rules →v, →t, →∃ to G7 (that is not complete w.r.t. to →v
rule) from the previous example we can get into an infinite loop

General Inclusions (3)

Example

10

1.3 Inference Algorithms

. . . this algorithm doesn’t necessarily terminate /.

Blocking in TA

• Blocking ensures that inference rules will be applicable until their changes will not
repeat “sufficiently frequently”.

• For ALC it can be shown that so called subset blocking is enough:
– In completion graph G a node x (not present in ABOX A) is blocked

by node y, if there is an oriented path from y to x and LG(x) ⊆ LG(y).

• ∃− rule is only applicable if the node a1 in its definition is not blocked by another
node.

11

1 Description Logics

Blocking in TA (2)

• In the previous example, the blocking ensures that node “2′′ is blocked by node
“0′′ and no other expansion occurs. Which model corresponds to such graph ?

• Introduced TA with subset blocking is sound, complete and finite deci-
sion procedure for ALC.

Let’s play . . .

• http://kbss.felk.cvut.cz/tools/dl

References

12

Bibliography

[1] * Vladimı́r Mař́ık, Olga Štěpánková, and Jǐŕı Lažanský. Umělá inteligence 6 [in
czech], Chapters 2-4. Academia, 2013.

[2] * Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter Patel-Schneider, editors. The Description Logic Handbook, Theory, Imple-
mentation and Applications, Chapters 2-4. Cambridge, 2003.

[3] * Enrico Franconi. Course on Description Logics. http://www.inf.unibz.it/ fran-
coni/dl/course/, cit. 22.9.2013.

13

	Description Logics
	What can we conclude from description logics?
	Inference problems
	Inference Algorithms
	Tableau Algorithm for ALC

