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Formal Ontologies

Formalizing Ontologies

We heard about ontologies as “some shared knowledge structures
often visualized through UML-like diagrams” ...

How to express more complicated constructs like cardinalities,
inverses, disjointness, etc.?
How to check they are designed correctly? How to reason about the
knowledge inside?
We need a formal language.
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Formal Ontologies

Logics for Ontologies

propositional logic

Example
“John is clever.′′ ⇒ ¬“John fails at exam.′′

first order predicate logic

Example
(∀x)(Clever(x)⇒ ¬((∃y)(Exam(y) ∧ Fails(x , y)))).

modal logic

Example
�((∀x)(Clever(x)⇒ 3¬((∃y)(Exam(y) ∧ Fails(x , y))))).

... what is the meaning of these formulas ?
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Formal Ontologies

Logics for Ontologies (2)

Logics are defined by their
Syntax – to represent concepts (defining symbols)

Semantics – to capture meaning of the syntactic constructs (defining
concepts)
Proof Theory – to enforce the semantics

Logics trade-off
A logical calculus is always a trade-off between expressiveness and
tractability of reasoning.
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Formal Ontologies

Propositional Logic

Example
How to check satisfiability of the formula A ∨ (¬(B ∧ A) ∨ B ∧ C) ?

syntax – atomic formulas and ¬, ∧, ∨, ⇒

semantics (|=) – an interpretation assigns true/false to each formula.
proof theory (`) – resolution, tableau

complexity – NP-Complete (Cook theorem)
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Formal Ontologies

First Order Predicate Logic

Example
What is the meaning of this sentence ?

(∀x1)((Student(x1) ∧ (∃x2)(GraduateCourse(x2) ∧ isEnrolledTo(x1, x2)))
⇒ (∀x3)(isEnrolledTo(x1, x3)⇒ GraduateCourse(x3)))

Student u ∃isEnrolledTo.GraduateCourse v ∀isEnrolledTo.GraduateCourse
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Formal Ontologies

First Order Predicate Logic – quick informal review
syntax – constructs involve

term (variable x , constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x , JOHN), possibly glued together
with ¬, ∧, ∨, ⇒, ∀,∃)

universally closed formula formula without free variable
((∀x)(∃y)hasFather(x , y) ∧ Person(y))

semantics – an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory – resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity – undecidable (Goedel)
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Formal Ontologies

Open World Assumption

OWA
FOPL accepts Open World Assumption, i.e. whatever is not known is not
necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity
No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed
World Assumption.
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Towards Description Logics

1 Formal Ontologies

2 Towards Description Logics

3 ALC Language

Towards Description Logics
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Towards Description Logics

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?

/ FOPL is undecidable – many logical consequences cannot be verified in
finite time.
We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.
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Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics Winter 2021 10 / 20



Towards Description Logics

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?
/ FOPL is undecidable – many logical consequences cannot be verified in

finite time.
We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?

/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.

Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics Winter 2021 10 / 20



Towards Description Logics

Languages sketched so far aren’t enough ?

Why not First Order Predicate Logic ?
/ FOPL is undecidable – many logical consequences cannot be verified in

finite time.
We often do not need full expressiveness of FOL.

Well, we have Prolog – wide-spread and optimized implementation of
FOPL, right ?
/ Prolog is not an implementation of FOPL – OWA vs. CWA, negation

as failure, problems in expressing disjunctive knowledge, etc.
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Towards Description Logics

What are Description Logics ?

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.

first languages emerged as an
experiment of giving formal
semantics to semantic networks
and frames. First
implementations in 80’s –
KL-ONE, KAON, Classic.
90’s ALC
2004 SHOIN (D) – OWL
2009 SROIQ(D) – OWL 2
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ALC Language

1 Formal Ontologies

2 Towards Description Logics

3 ALC Language

ALC Language
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ALC Language

Concepts and Roles

Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person u ∃hasChild · Person.

(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild

individuals - represent ground terms / individuals, e.g. JOHN
Theory K = (T ,A) (in OWL refered as Ontology) consists of a

TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN), loves(JOHN, MARY )}

DLs differ in their expressive power (concept/role constructors, axiom
types).
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Theory K = (T ,A) (in OWL refered as Ontology) consists of a
TBOX T - representing axioms generally valid in the domain, e.g.

T = {Man v Person}

ABOX A - representing a particular relational structure (data),
e.g. A = {Man(JOHN), loves(JOHN, MARY )}

DLs differ in their expressive power (concept/role constructors, axiom
types).
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ALC Language

Semantics, Interpretation

as ALC is a subset of FOPL, let’s define semantics analogously (and
restrict interpretation function where applicable):

Interpretation is a pair I = (∆I , ·I), where ∆I is an interpretation
domain and ·I is an interpretation function.
Having atomic concept A, atomic role R and individual a, then

AI ⊆ ∆I

RI ⊆ ∆I ×∆I

aI ∈ ∆I
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ALC Language

ALC (= attributive language with complements)
Having concepts C , D, atomic concept A and atomic role R, then for
interpretation I :

concept conceptI description
> ∆I (universal concept)
⊥ ∅ (unsatisfiable concept)
¬C ∆I \ CI (negation)
C1 u C2 CI1 ∩ CI2 (intersection)
C1 t C2 CI1 ∪ CI2 (union)
∀R · C {a | ∀b((a, b) ∈ RI =⇒ b ∈ CI)} (universal restriction)
∃R · C {a | ∃b((a, b) ∈ RI ∧ b ∈ CI)} (existential restriction)

TBOX
axiom I |= axiom iff description
C1 v C2 CI1 ⊆ CI2 (inclusion)
C1 ≡ C2 CI1 = CI2 (equivalence)

ABOX (UNA = unique name assumption1)
axiom I |= axiom iff description
C(a) aI ∈ CI (concept assertion)
R(a1, a2) (aI1 , aI2 ) ∈ RI (role assertion)

1two different individuals denote two different domain elements
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ALC Language

ALC – Example

Example
Consider an information system for genealogical data integrating multiple
geneological databases. Let’s have atomic concepts
Person, Man, GrandParent and atomic role hasChild .

Set of persons that have just men as their descendants (if any)

Person u ∀hasChild ·Man
How to define concept GrandParent ? (specify an axiom)

GrandParent ≡ Person u ∃hasChild · ∃hasChild · >

How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)
∧∃z (hasChild(y , z)))))
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Petr Křemen (petr.kremen@fel.cvut.cz) Description Logics Winter 2021 15 / 20



ALC Language

ALC – Example

Example
Consider an information system for genealogical data integrating multiple
geneological databases. Let’s have atomic concepts
Person, Man, GrandParent and atomic role hasChild .

Set of persons that have just men as their descendants (if any)
Person u ∀hasChild ·Man

How to define concept GrandParent ? (specify an axiom)

GrandParent ≡ Person u ∃hasChild · ∃hasChild · >
How does the previous axiom look like in FOPL ?

∀x (GrandParent(x) ≡ (Person(x) ∧ ∃y (hasChild(x , y)
∧∃z (hasChild(y , z)))))
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ALC Language

ALC Example – T

Example

Woman ≡ Person u Female
Man ≡ Person u ¬Woman

Mother ≡ Woman u ∃hasChild · Person
Father ≡ Man u ∃hasChild · Person
Parent ≡ Father tMother

Grandmother ≡ Mother u ∃hasChild · Parent
MotherWithoutDaughter ≡ Mother u ∀hasChild · ¬Woman

Wife ≡ Woman u ∃hasHusband ·Man
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ALC Language

Interpretation – Example

Example
Consider a theory K1 = ({GrandParent ≡
Person u ∃hasChild · ∃hasChild · >}, {GrandParent(JOHN)}). Find
some model.

a model of K1 can be interpretation I1 :

∆I1 = ManI1 = PersonI1 = {John, Phillipe, Martin}
hasChildI1 = {(John, Phillipe), (Phillipe, Martin)}
GrandParentI1 = {John}
JOHNI1 = {John}

this model is finite and has the form of a tree with the root in the
node John :
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ALC Language

Shape of DL Models
The last example revealed several important properties of DL models:

Tree model property (TMP)
Every consistent K = ({}, {C(I)}) has a model in the shape of a rooted
tree.

Finite model property (FMP)
Every consistent K = (T ,A) has a finite model.

Both properties represent important characteristics of ALC that
significantly speed-up reasoning.
In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity.
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ALC Language

Example – CWA × OWA
Example

ABOX
hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide(OEDIPUS) ¬Patricide(THERSANDROS)

Edges represent role assertions of hasChild ; red/green colors distinguish
concepts instances – Patricide a ¬Patricide

JOCASTA //
**

POLYNEIKES // THERSANDROS

OEDIPUS
44

Q1 (∃hasChild · (Patricide u ∃hasChild · ¬Patricide))(JOCASTA),

JOCASTA // • // •

Q2 Find individuals x such that K |= C(x), where C is

¬Patricide u ∃hasChild− · (Patricide u ∃hasChild− · {JOCASTA})

What is the difference, when considering CWA ?

JOCASTA // • // x
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