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Formal Ontologies

Formalizing Ontologies

@ We heard about ontologies as “some shared knowledge structures
often visualized through UML-like diagrams” ...

@ How to express more complicated constructs like cardinalities,
inverses, disjointness, etc.?

@ How to check they are designed correctly? How to reason about the
knowledge inside?

@ We need a formal language.
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Logics for Ontologies

@ propositional logic

“John is clever.” = —*“John fails at exam.” I

o first order predicate logic
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Formal Ontologies

Logics for Ontologies

@ propositional logic

“John is clever.” = —“John fails at exam.” I

o first order predicate logic

(Vx)(Clever(x) = —((3y)(Exam(y) A Fails(x,y)))).

@ modal logic

O((Vx)(Clever(x) = <—((3y)(Exam(y) A Fails(x, y)))))-

@ ... what is the meaning of these formulas 7
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Logics for Ontologies (2)

Logics are defined by their

e Syntax — to represent concepts (defining symbols)

Logics trade-off

A logical calculus is always a trade-off between expressiveness and
tractability of reasoning.
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Logics for Ontologies (2)

Logics are defined by their
e Syntax — to represent concepts (defining symbols)

@ Semantics — to capture meaning of the syntactic constructs (defining
concepts)

@ Proof Theory — to enforce the semantics

Logics trade-off

A logical calculus is always a trade-off between expressiveness and
tractability of reasoning.
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Formal Ontologies

Propositional Logic

How to check satisfiability of the formula AV (=(BAA)V BAC)? I

syntax — atomic formulas and —, A, V, =

semantics (=) — an interpretation assigns true/false to each formula.
proof theory (=) — resolution, tableau
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Formal Ontologies

Propositional Logic

How to check satisfiability of the formula AV (=(BAA)V BAC)? I

syntax — atomic formulas and —, A, V, =
semantics (=) — an interpretation assigns true/false to each formula.
proof theory (=) — resolution, tableau

complexity — NP-Complete (Cook theorem)
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First Order Predicate Logic

What is the meaning of this sentence 7

(Vx1)((Student(x1) A (Ix2)( GraduateCourse(x2) A isEnrolled To(x1, x2)))
= (Vx3)(isEnrolledTo(x1, x3) = GraduateCourse(x3)))

Student M disEnrolled To. GraduateCourse T VisEnrolled To. GraduateCourse

v,
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First Order Predicate Logic — quick informal review

syntax — constructs involve

term (variable x, constant symbol JOHN, function
symbol applied to terms fatherOf (JOHN))
axiom/formula (predicate symbols applied to terms
hasFather(x, JOHN), possibly glued together
with =, A, V, =, ¥,3)
universally closed formula formula without free variable
((Vx)(3y)hasFather(x,y) A Person(y))

semantics — an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory — resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem
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Formal Ontologies

First Order Predicate Logic — quick informal review

syntax — constructs involve
term (variable x, constant symbol JOHN, function

symbol applied to terms fatherOf (JOHN))

axiom/formula (predicate symbols applied to terms
hasFather(x, JOHN), possibly glued together
with =, A, V, =, ¥,3)

universally closed formula formula without free variable
((Vx)(3y)hasFather(x,y) A Person(y))

semantics — an interpretation (with valuation) assigns:

domain element to each term
true/false to each closed formula

proof theory — resolution; Deduction Theorem, Soundness Theorem,
Completeness Theorem

complexity — undecidable (Goedel)
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Open World Assumption

FOPL accepts Open World Assumption, i.e. whatever is not known is not
necessarily false.

As a result, FOPL is monotonic, i.e.

monotonicity
No conclusion can be invalidated by adding extra knowledge.

This is in contrary to relational databases, or Prolog that accept Closed
World Assumption.

A St
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Towards Description Logics

Languages sketched so far aren’t enough 7

@ Why not First Order Predicate Logic ?
® FOPL is undecidable — many logical consequences cannot be verified in
finite time.
e We often do not need full expressiveness of FOL.
@ Well, we have Prolog — wide-spread and optimized implementation of
FOPL, right ?
® Prolog is not an implementation of FOPL — OWA vs. CWA, negation
as failure, problems in expressing disjunctive knowledge, etc.
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Towards Description Logics

What are Description Logics ?
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Towards Description Logics

What are Description Logics 7

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling

terminological incomplete knowledge.
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What are Description Logics 7

Description logics (DLs) are (almost
exclusively) decidable subsets of
FOPL aimed at modeling
terminological incomplete knowledge.
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@ Basic building blocks of DLs are :

(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person 1 3hasChild - Person.
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Concepts and Roles

@ Basic building blocks of DLs are :
(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person 1 3hasChild - Person.
(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild
individuals - represent ground terms / individuals, e.g. JOHN
@ Theory KL = (7,.A) (in OWL refered as Ontology) consists of a
TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man C Person}
ABOX A - representing a particular relational structure (data),
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ALC Language

Concepts and Roles

@ Basic building blocks of DLs are :
(atomic) concepts - representing (named) unary predicates / classes,
e.g. Parent, or Person 1 3hasChild - Person.
(atomic) roles - represent (named) binary predicates / relations, e.g.
hasChild
individuals - represent ground terms / individuals, e.g. JOHN

@ Theory KL = (7,.A) (in OWL refered as Ontology) consists of a
TBOX T - representing axioms generally valid in the domain, e.g.
T = {Man C Person}
ABOX A - representing a particular relational structure (data),
e.g. A= {Man(JOHN), loves(JOHN, MARY)}
@ DLs differ in their expressive power (concept/role constructors, axiom

types).
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ALC Language

Semantics, Interpretation

@ as ALC is a subset of FOPL, let's define semantics analogously (and
restrict interpretation function where applicable):
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ALC Language

Semantics, Interpretation

@ as ALC is a subset of FOPL, let's define semantics analogously (and
restrict interpretation function where applicable):

o Interpretation is a pair Z = (AZ, 1), where A is an interpretation
domain and -Z is an interpretation function.
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ALC Language

Semantics, Interpretation

@ as ALC is a subset of FOPL, let's define semantics analogously (and
restrict interpretation function where applicable):

o Interpretation is a pair Z = (AZ, 1), where A is an interpretation
domain and -Z is an interpretation function.

@ Having atomic concept A, atomic role R and individual a, then

AIQAI
RT c AT x AT
af e AT
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ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for
interpretation 7 :

concept  conceptt description

T AT (universal concept)

€ 0 (unsatisfiable concept)
-C AT\ CT (negation)

anG cEnct (intersection)

auG ctudt (union)

VR-C {a|Vb((a,b) € RT = bec CT)} (universal restriction)
3rR-C {a|3b((a,b) € RT A b€ CT)} (existential restriction)

Ltwo different individuals denote two different domain elements
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Having concepts C, D, atomic concept A and atomic role R, then for
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concept  conceptt description
T AT (universal concept)
€ 0 (unsatisfiable concept)
-C AT\ CT (negation)
anG cEnct (intersection)
auG ctudt (union)
VR-C {a|Vb((a,b) € RT = bec CT)} (universal restriction)
3rR-C {a|3b((a,b) € RT A b€ CT)} (existential restriction)
axiom 7 |= axiom iff  description
TBOX G LCG Ci C Ci (inclusion)
G=0G G =¢G (equivalence)
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ALC (= attributive language with complements)

Having concepts C, D, atomic concept A and atomic role R, then for
interpretation 7 :

concept  conceptt description
T AT (universal concept)
€ 0 (unsatisfiable concept)
-C AT\ CT (negation)
anG cEnct (intersection)
auG ctudt (union)
VR-C {a|Vb((a,b) € RT = bec CT)} (universal restriction)
3rR-C {a|3b((a,b) € RT A b€ CT)} (existential restriction)
axiom 7 |= axiom iff  description
TBOX G LCG Ci C Ci (inclusion)
G=0G G =¢G (equivalence)
ABOX (UNA = unique name assumption!)
axiom T [= axiom iff  description
C(a) atect (concept assertion)

R(a1,a2) (af,af) € RT  (role assertion)

Ltwo different individuals denote two different domain elements
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ALC — Example

Consider an information system for genealogical data integrating multiple
geneological databases. Let's have atomic concepts
Person, Man, GrandParent and atomic role hasChild.

@ Set of persons that have just men as their descendants (if any)
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Consider an information system for genealogical data integrating multiple
geneological databases. Let's have atomic concepts
Person, Man, GrandParent and atomic role hasChild.
@ Set of persons that have just men as their descendants (if any)
o Person M YhasChild - Man
@ How to define concept GrandParent ? (specify an axiom)
o GrandParent = Person 1 3hasChild - 3hasChild - T
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ALC — Example

Consider an information system for genealogical data integrating multiple
geneological databases. Let's have atomic concepts
Person, Man, GrandParent and atomic role hasChild.
@ Set of persons that have just men as their descendants (if any)
o Person M YhasChild - Man
@ How to define concept GrandParent ? (specify an axiom)
o GrandParent = Person 1 3hasChild - 3hasChild - T

@ How does the previous axiom look like in FOPL 7

Vx (GrandParent(x) = (Person(x) A Jy (hasChild(x, y)
A3z (hasChild(y, z)))))
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ALC Language

ALC Example = T

Woman

Man

Mother

Father

Parent

Grandmother
MotherWithoutDaughter
Wife

Person M Female

Person M ~Woman

Woman M hasChild - Person
Man 1 dhasChild - Person
Father LI Mother

Mother 1M JhasChild - Parent
Mother MY hasChild - =Woman
Woman M dhasHusband - Man
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Description Logics
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.
@ a model of K1 can be interpretation Z; :
o ATt = Man™t = Person™ = {John, Phillipe, Martin}
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.
@ a model of K1 can be interpretation Z; :
o ATt = Man™t = Person™ = {John, Phillipe, Martin}
o hasChild®: = {(John, Phillipe), (Phillipe, Martin)}
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.
@ a model of K1 can be interpretation Z; :
o ATt = Man™t = Person™ = {John, Phillipe, Martin}
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o GrandParent™ = {John}
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.

@ a model of K1 can be interpretation Z; :

o ATt = Man™t = Person™ = {John, Phillipe, Martin}
hasChild™* = {(John, Phillipe), (Phillipe, Martin)}
GrandParent™ = {John}

JOHN®: = {John}
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ALC Language

Interpretation — Example

o Consider a theory K1 = ({ GrandParent =
Person M 3hasChild - 3hasChild - T}, { GrandParent(JOHN)}). Find
some model.

@ a model of K1 can be interpretation Z; :
o ATt = Man™t = Person™ = {John, Phillipe, Martin}
o hasChild®: = {(John, Phillipe), (Phillipe, Martin)}
o GrandParent™ = {John}
o JOHN®: = {John}
@ this model is finite and has the form of a tree with the root in the
node John :

| Person, Man, GrandParent: John - Person, Man: Phillipe - Person, Man : Martin
hasChild hasChild
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Shape of DL Models

The last example revealed several important properties of DL models:
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent KL = ({},{C(/)}) has a model in the shape of a rooted
tree.
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent KL = ({},{C(/)}) has a model in the shape of a rooted
tree.

Finite model property (FMP)

Every consistent IC = (7, .A) has a finite model.
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent KL = ({},{C(/)}) has a model in the shape of a rooted
tree.

Finite model property (FMP)
Every consistent IC = (7, .A) has a finite model.

Both properties represent important characteristics of ALC that
significantly speed-up reasoning.
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Shape of DL Models

The last example revealed several important properties of DL models:

Tree model property (TMP)

Every consistent KL = ({},{C(/)}) has a model in the shape of a rooted
tree.

Finite model property (FMP)

Every consistent IC = (7, .A) has a finite model.

Both properties represent important characteristics of ALC that
significantly speed-up reasoning.

In particular (generalized) TMP is a characteristics that is shared by
most DLs and significantly reduces their computational complexity. /-

Petr Kfemen (petr.kremen@fel.cvut.cz) Description Logics

Winter 2021 18 /20



Example - CWA x OWA

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES)  hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) — Patricide( THERSANDROS)
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Example - CWA x OWA

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES)  hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) — Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — “atricide a = Patricide

JOCASTA —————— POLYNEIKES — THERSANDROS
T~ ==
OEDIPUS
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Example - CWA x OWA

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) — Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — a —Patricide

JOCASTA —————— POLYNEIKES — THERSANDROS
T~ ==

Q1 (3hasChild - (Patricide M 3hasChild - —Patricide))(JOCASTA),

JOCASTA—= ¢« —= o
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Example - CWA x OWA

hasChild(JOCASTA, OEDIPUS) hasChild(JOCASTA, POLYNEIKES)
ABOX  hasChild(OEDIPUS, POLYNEIKES) hasChild(POLYNEIKES, THERSANDROS)
Patricide( OEDIPUS) — Patricide( THERSANDROS)

Edges represent role assertions of hasChild; red/green colors distinguish
concepts instances — a —Patricide

JOCASTA ———— POLYNEIKES —= THERSANDROS
T~ ==

Q1 (3hasChild - (Patricide M 3hasChild - —Patricide))(JOCASTA),
JOCASTA —= o —> o
Q2 Find individuals x such that K | C(x), where C is

—Patricide 1 3hasChild™ - (Patricide M 3hasChild~ - { JOCASTA})

What is the difference, when considering CWA 7

JOCASTA — ¢ — x
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ALC Language
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