
1B4M35PAP Advanced Computer Architectures

Advanced Computer Architectures

GPU (Graphics processing unit),
GPGPU (General-purpose computing on GPU;

 General-purpose GPU)
and GPU Computing

Czech Technical University in Prague, Faculty of Electrical Engineering
Slides authors: Michal Štepanovský, update Pavel Píša

2B4M35PAP Advanced Computer Architectures

Motivation

• Tianhe-1A - Chinese Academy of Sciences' Institute of Process
Engineering (CAS-IPE)

• Molecular simulations of 110 milliards atoms (1.87 / 2.507 PetaFLOPS)
• Rmax: 2.56 Pflops, Rpeak: 4,7 PFLOPS
• 7 168 Nvidia Tesla M2050 (448 Thread processors, 512 GFLOPS FMA)
• 14 336 Xeon X5670 (6 cores / 12 threads)
• „If the Tianhe-1A were built only with CPUs, it would need more than

50,000 CPUs and consume more than 12MW. As it is, the Tianhe-1A
consumes 4.04MW.“
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/

which leads to 633 GFlop/kWatt (K Computer - 830 GFlop/kWatt)
• It uses own interconnection network: Arch, 160 Gbps
• There are already three supercomputers utilizing graphics cards in China,

Tianhe-1 (AMD Radeon HD 4870 X2), Nebulae (nVidia Tesla C2050) and
Tianhe-1A

• http://i.top500.org/system/176929
• http://en.wikipedia.org/wiki/Tianhe-I

http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/
http://en.wikipedia.org/w/index.php?title=Arch_(interconnect)&action=edit&redlink=1
http://i.top500.org/system/176929
http://i.top500.org/system/176929
http://i.top500.org/system/176929
http://en.wikipedia.org/wiki/Tianhe-I

3B4M35PAP Advanced Computer Architectures

Motivation

Tianhe-2
• 33.86 PFLOPS
• Power consumption 17 MW
• Kylin Linux
• 16,000 nodes, each built from 2 Intel Ivy Bridge Xeon processors and

3 Intel Xeon Phi coprocessors (61 cores) = 32000 CPU and 48000
coprocessors, 3 120 000 cores in total

• Fortran, C, C++, Java, OpenMP, and MPI 3.0 based on MPICH
• A broadcast operation via MPI was running at 6.36 GB/s and the

latency measured with 1K of data within 12,000 nodes is about 9 us
• directive-based intra-node programming model by OpenMC (in

progress) – instead of OpenMP, CUDA, OpenACC, or OpenCL

4B4M35PAP Advanced Computer Architectures

Motivation

Sunway TaihuLight
• 93 PFLOPS (LINPACK benchmark), peak 125 PFLOPS
• Interconnection 14 GB/s, Bisection 70 GB/s
• Memory 1.31 PB, Storage 20 PB
• 40,960 SW26010 (Chinese) – total 10,649,600 cores
• SW26010 256 processing cores + 4 management
• 64 KB of scratchpad memory for data (and 16 KB for instructions)
• Sunway RaiseOS 2.0.5

(Linux based)
• OpenACC

(for open accelerators)

programming standard
• Power Consumption

15 MW (LINPACK)

5B4M35PAP Advanced Computer Architectures

Motivation

Sunway TaihuLight
• Core group

– Management Processing Element (MPE)
– 64 Computing Processing Elements

(CPEs)
• 4 core groups on SW26010 chip
• 8 floating point operations per cycle per

CPE core (64 bit), 16 MPE

Source: Report on the Sunway TaihuLight System,
 Jack Dongarra, University of Tennessee, Oak Ridge National Laboratory

6B4M35PAP Advanced Computer Architectures

More accurate results

• API (Application Programming Interface): OpenGL, DirectX – the GPU can be
considered in such applications as coprocessor of main CPU

7B4M35PAP Advanced Computer Architectures

Motivation

• Estonia Donates Project: Our GPGPU supercomputer is GPU-based massively
parallel machine, employing more than thousand parallel streaming processors.
Using GPU-s is very new technology, very price- and cost-effective compared to
old CPU solutions. Performance (currently):

6240 streaming processors + 14 CPU cores
23,2 arithmetic TFLOPS (yes, 23 200 GFLOPS)

http://estoniadonates.wordpress.com/our-supercomputer
• Supermicro: 2026GT-TRF-FM475

• 2x Quad/Dual-Core Intel® Xeon® processor 5600/5500 series
• Intel® 5520 chipset with QPI up to 6.4 GT/s + PLX8648
• Up to 96GB of Reg. ECC DDR3 DIMM SDRAM
• FM475: 4x NVIDIA Tesla M2075 Fermi GPU Cards
• FM409: 4x NVIDIA Tesla M2090 Fermi GPU Cards
http://www.supermicro.com/GPU/GPU.cfm#GPU_SuperBlade

• „FASTRA: the world’s most powerful desktop supercomputer“
We have now developed a PC design that incorporates 13 GPUs, resulting in a
massive 12TFLOPS of computing power.
http://fastra2.ua.ac.be/

http://en.wikipedia.org/wiki/GPGPU
http://en.wikipedia.org/wiki/Gpu
http://estoniadonates.wordpress.com/our-supercomputer
http://www.supermicro.com/products/system/2U/2026/SYS-2026GT-TRF-FM475.cfm
http://www.supermicro.com/GPU/GPU.cfm
http://www.supermicro.com/GPU/GPU.cfm
http://www.supermicro.com/GPU/GPU.cfm
http://www.supermicro.com/GPU/GPU.cfm
http://www.supermicro.com/GPU/GPU.cfm
http://www.supermicro.com/GPU/GPU.cfm
http://fastra2.ua.ac.be/

8B4M35PAP Advanced Computer Architectures

CPU vs. GPU

Nvidia: „GPU computing is possible because today's GPU does much more than render
graphics: It sizzles with a teraflop of floating point performance and crunches application tasks
designed for anything from finance to medicine.“ Source: www.nvidia.com

9B4M35PAP Advanced Computer Architectures

Performance metrics – do you remember?
Let { Ri } be execution speeds of different programs

i = 1, 2, ..., m measured in MIPS (MFLOPS), or IPS (FLOPS)

• The arithmetic mean performance:

Ra is equally weighted (1/m) in all programs and is proportional to the
sum of the IPC, but not the sum of execution times (inversely
proportional). Arithmetic mean (average) not generally usable:

Only iff C1 = C2 (total number of cycles of both programs is equal) then
Ra is usable

• In practice: The arithmetic mean of execution speed of two (or more)
different programs is not related to overall execution speed! Not usable!

Ra =
1
2 (R1+R2)=

1
2 (

IC1

T 1
+

IC 2

T 2)=12 (
IC1

IC1 .CPI 1 T CLK

+
IC2

IC2 .CPI 2 T CLK
)=

=
1
T CLK

(
IPC1+ IPC2

2)=1T CLK
(
IC1

2C1

+
IC2

2C2
) but IPC1,2 =

IC 1+ IC2

C1+C2

Ra =∑
i=1

m R i

m
=
1
m
∑
i=1

m

R i

10B4M35PAP Advanced Computer Architectures

Performance metrics – do you remember?

• The geometric mean:

It does not summarize real performance. It has no inverse relation to
overall execution time of all programs. Usable only for comparison with
normalized results to reference compute.

• The harmonic mean:

Only iff IC1 = IC2 (both programs are of the same size) then Rh is usable

• There exist even weighted versions of these performance metrics.

Rh =
2

1
R1

+
1
R2

= .. .=
1

TCLK
(

2
CPI 1+CPI 2

)=
1

T CLK

2 IC1 IC2

C1 IC 2+C2 IC1

Rh =
m

∑
i=1

m
1
R i

Rg =∏
i=1

m

R i

1
m

11B4M35PAP Advanced Computer Architectures

3D graphics pipeline

• it is a way of processing graphic data to achieve an image (the
input is representation of a 3D scene, output is 2D image)

• Next phases of geometric/graphics data processing:
• transformations (scaling, rotations, translation,..) – matrix multiplication
• lighting (only vertexes) – dot products of vectors
• projection transformations (into camera 3D coordinates) – matrix

multiplication,
• clipping, rasterization and texture mapping (pixels from this stage)

• What is important for us -> HW support required – GPU development

12B4M35PAP Advanced Computer Architectures

GPU

• What was the original solution?
• narrowly specialized single-purpose HW according to the principle of

3D graphic pipeline:
• vertex shader (3D model manipulation, vertexes lightening),
• geometry shader (adds/removes vertexes,..)
• pixel shader (more precise: fragment shader) – (input is rasterization

output; defines color of „pixel“ (fragment) - textures..)
• ROP unit (create pixel from pixel fragments, optimizes image for

view) ROP – Raster OPerator, (ATI: Element Render Back-End)

Vertex
shader

Geometry
shader

Setup &
Rasterizer

Pixel
shader

Raster
Operations

13B4M35PAP Advanced Computer Architectures

OpenGL Pipeline

Vertex Shader
glDrawElements,
glArrayElement,
glDrawArrays

Vertex Shader
Program

Geometry Shader
Geometry

Shader Program

Clipping

Viewport glViewport

Face Culling
glCullFace, glFrontFace,
glPolygonMode, glEn-
able(GL_CULL_FACE)

Uniforms and
Samplers

Rasterization
glPolygonOffset,

glPointSize, glLineStip-
ple, glLineWidth

Fragment Shader
Fragment

Shader Program

Scissor
glScissor, glEn-

able(GL_SCISSOR)

Multisample glSampleCoverage, glEn-
able(GL_MULTISAMPLE)

Stencil

glStencilFunc,
glStentilMask,

glStencilOp, glEn-
able(GL_STENCIL_TEST)

Depth
glDepthFunc,

glDepthMask, glEn-
able(GL_DEPTH_TEST)

Occlusion Query
glGenQueries, glIsQuery,

glBeginQuery, glEnd-
Query, glGetQuery*

Blending
glBlendColor, glBlend-
Func, glBlendEquation,
glEnable(GL_BLEND)

Dithering glEnable(GL_DITHER)

Logic Op glLogicOp, glEn-
able(GL_COLOR_LOGIC_OP)

Masking
glColorMask,
glIndexMask

Framebuffer
Control

glDrawBuffer,
glDrawBuffers

Framebuffer

14B4M35PAP Advanced Computer Architectures

GPU

• Today concept (and future directions)?
• HW function in each phase much more flexible, programmable (not

only the computation operation „program“, but even support of control-
flow primitives)

• 16, 24, 32, 64 floating point precision supported today
• unified shaders (each can be used for all functions..) - (ATI Xenos,

GeForce 8800) – advantage?
- low detail scene (vertex
shader vs. pixel shader)
 - highly detailed scene (vertex
shader vs. pixel shader)

• What does it mean for us /
what are the benefits?

15B4M35PAP Advanced Computer Architectures

GPU

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

http://techreport.com/articles.x/11211/3

16B4M35PAP Advanced Computer Architectures

GPU

• The Shader Unification Principle – Architecture provides one
large set of data paralleled floating point processors generic
enough to replace the functions of individual shaders

Programmable unified processors

Vertex
programs

Geometry
programs

Pixels
programs

Compute
programs

Rasterization
Hidden surface

removal

GPU Memory (DRAM)

3D geometric
primitives

Final
image

17B4M35PAP Advanced Computer Architectures

GPU - GeForce 8800

stream
processor

frame
buffer

texture
filtering

stream
multiprocessor

18B4M35PAP Advanced Computer Architectures

GeForce 8800 – hardware limits

• 512 threads in one block
• 8 blocks on one SM (Streaming Multiprocessor)
• 768 threads on one SM > 768x16=12 288 threads in total!
• 128 threads simultaneously running
• 16 384 bytes shared cache for one SM
• two threads from different blocks cannot cooperate together

19B4M35PAP Advanced Computer Architectures

GPU - GeForce 7800 – for comparison

http://techreport.com/articles.x/8466/1

http://techreport.com/articles.x/8466/1

20B4M35PAP Advanced Computer Architectures

GPU - GeForce 7800

http://techreport.com/articles.x/8466/1

pixel shader unitvertex shader unit

raster operators (ROP)

http://techreport.com/articles.x/8466/1

21B4M35PAP Advanced Computer Architectures

CUDA (Compute Unified Device Architecture)

• Kernel – part of application running
on GPU

• Kernel – is executed on Grid
• Grid – lattice of thread blocks
• Thread block – group of threads

starting at same address and
communicating through shared
memory and synchronization barriers
(<=512)

• One block maps to one SM
(Streaming Multiprocessor), SIMD
(Single Instruction, Multiple Data)

• One thread in same block to one
execution unit (Streaming Processor
core - SP core)

http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=2

22B4M35PAP Advanced Computer Architectures

CUDA (Compute Unified Device Architecture)

CUDA memory model:
• Registers and shared

memory – on chip
• Local memory – frame buffer
• Constant Mem and Texture

Mem – frame buffer, only for
reading, cached on chip,
coherence?

• Global memory

http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=3

red = fast (on chip)
 orange = slow (DRAM)

23B4M35PAP Advanced Computer Architectures

CUDA – Threads, Blocks, Grid

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

• SIMD (Single Instruction,
Multiple Data)
architecture

• Thread execution
managed in warps

• Warp size 32 therad
4 on each of 8 SPs

• SIMT broadcasted
synchronously to all SPs

• some inactive, branches
• warp diverge, converge
• branch synchronization

stack

24B4M35PAP Advanced Computer Architectures

SIMT Terminology, Nvidia, CUDA, CPU

Nvidia CUDA OpenCL Hennessy & Patterson

Thread Work-item Sequence of SIMD Lane operations

Warp Wavefront Thread of SIMD Instructions

Block Workgroup Body of vectorized loop

Grid NDRange Vectorized loop

25B4M35PAP Advanced Computer Architectures

CUDA – Memory Local, Shared, Global

• Local (thread private) memory
• for the lifetime of the thread
• automatically by the compiler

• Shared (per block) memory
• __shared__ CUDA keyword
• access only threads within the block

Block (2, 0)Block (1, 0)Block (0, 0)

Block (0, 0)

Block (2, 0)Block (1, 0)Block (0, 0)

Source: https://nyu-cds.github.io/python-gpu/02-cuda/

• Global memory
• __device__ keyword
• accessible to all

threads and host
(CPU).

• allocated and
deallocated by the
host

• Used to initialize
the data that the
GPU will work on

26B4M35PAP Advanced Computer Architectures

Memory model – Types

Type Read/write Speed

Global memory read and
write

slow, but cached

Texture memory read only cache optimized for 2D/3D access pattern

Constant
memory

read only where constants and kernel arguments are
stored

Shared memory read/write fast

Local memory read/write used when it does not fit in to registers
part of global memory
slow but cached

Registers read/write fast

• local, Constant, and Texture – off-chip, cached
• each SM has a L1 cache for global memory
• all SMs share a L2 cache
• constant memory – read only, shorter latency, higher through.
• texture memory is read only.

27B4M35PAP Advanced Computer Architectures

CUDA – Declaration of Variables Placement

Declaration Memory Scope Lifetime

int v register thread thread

int vArray[10] local thread thread

__shared__ int sharedV shared block block

__device__ int globalV global grid application

__constant__ int constantV constant grid application

• Speed (Fast to slow):
• Register file
• Shared Memory
• Constant Memory
• Texture Memory
• Local Memory (thread local global memory) and Global

Memory

28B4M35PAP Advanced Computer Architectures

CUDA C

• CUDA C is based on C language with extensions but even
some limitations

• Kernel – specified by __global__
• each thread executing kernel is assigned by unique ID

// Definition of vector addition function:
void VecAdd(int n, float* A, float* B, float* C)
{

for(int i=0; i<n; i++)
C[i] = A[i] + B[i];

}

int main()
{

...
// Sum of vectors of length N:
VecAdd(N, A, B, C);

}

29B4M35PAP Advanced Computer Architectures

CUDA C

• CUDA C is based on C language with extensions but even
some limitations

• Kernel – specified by __global__
• each thread executing kernel is assigned by unique ID

 // Kernel definition
__global__ void VecAdd(int n, float* A, float* B, float* C)
{

int i = threadIdx.x;
if(i<n) C[i] = A[i] + B[i];

}

int main()
{

...
// Execute N threads onGPU – Sum of vectors of length N:
VecAdd<<<1, N>>>(N, A, B, C);

}
<<<number of blocks, number of threads>>>

30B4M35PAP Advanced Computer Architectures

CUDA C

• To support native support for vector, 2D and 3D matrices,
variable threadIdx is implemented as 3-components vector

• For 2D block of dimensions (Dx, Dy), thread on position (x,y)
has its ID (x + y Dx)

• For 3D block of dimensions (Dx, Dy, Dz), thread on position
(x,y,z) has its id ID (x + y Dx + z Dx Dy)

__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{

int i = threadIdx.x;
int j = threadIdx.y;
C[i][j] = A[i][j] + B[i][j];

}

31B4M35PAP Advanced Computer Architectures

CUDA C

int main()
{

...
// Execute kernel as block of dimensions N * N * 1 threads
int numBlocks = 1;
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

}

Number of threads inside a block is limited. All threads belonging
to the same block are executed on the same processor (SM)
and share limited memory resources.

Today single block of threads can contain limited number of
threads, where today limit is usually 1024 threads.

32B4M35PAP Advanced Computer Architectures

CUDA C

__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)
 C[i][j] = A[i][j] + B[i][j];

}
int main()
{

...
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N /threadsPerBlock.x, N/ threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

}

33B4M35PAP Advanced Computer Architectures

CUDA

34B4M35PAP Advanced Computer Architectures

CUDA C

The fundamental condition is that blocks are required to be
executable independently (executed in arbitrary order,
simultaneously/parallel or sequential/serial)

Support for many other usable functions:
• cudaMalloc(), cudaMallocPitch(), cudaMalloc3D()
• cudaFree()
• cudaMemcpy(), cudaMemcpy2D() , cudaMemcpy3D()
• dimBlock(), dimGrid()
• atd.
Declarations:

__global__ void KernelFunc(...); //kernel function, runs on device

__device__ int GlobalVar; //variable in device memory

__shared__ int SharedVar; //variable in per-block shared memory

Special variables:

dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

35B4M35PAP Advanced Computer Architectures

Incrementing large array of elements – CUDA
#include <stdio.h>
__global__ void increment(int* out, int* in) {
 int idx = blockDim.x * blockIdx.x + threadIdx.x;
 out[idx] = in[idx]+1;
}

int main (int argc, char** argv)
{
 int* num_h; // pointer to array
 int* num_d; // pointer to array in global memory
 int* num_out_d; // pointer to output array in global memory
 size_t num_size = 128*512; // size of array (too high for single block of threads)
 int num_threads_per_block = 128; // number of threads in one block
 int num_blocks = num_size/num_threads_per_block; // lattice size
 size_t num_size_bytes = sizeof (int)*num_size; // array size in bytes

 num_h = (int*)malloc (num_size_bytes);
 cudaMalloc ((void**) &num_d, num_size_bytes); // global memory allocation
 cudaMalloc ((void**) &num_out_d, num_size_bytes); // global memory allocation

 for (unsigned int i = 0; i < num_size; i++) {
 num_h[i] = i;
 }

 cudaMemcpy (num_d, num_h, num_size_bytes, cudaMemcpyHostToDevice);
 increment<<<num_blocks, num_threads_per_block>>> (num_out_d, num_d);
 cudaThreadSynchronize();
 cudaMemcpy (num_h, num_out_d, num_size_bytes, cudaMemcpyDeviceToHost);

 cudaFree(num_d); cudaFree(num_out_d); free(num_h);
 return 0;
}

36B4M35PAP Advanced Computer Architectures

• Introduced 2014 with CUDA 6 and the Kepler
cudaError_t cudaMallocManaged(void** ptr, size_t size);

• pre-Pascal GPUs (Tesla K80) allocates memory on the
GPU

• Pascal, Volta, … pages can migrate to any processor’s
memory, populated with pagetables on demand

• cudaMemPrefetchAsync(ptr, length, destDevice,
stream)

• cudaMemAdvise(ptr, length, advice, device)
cudaMemAdviseSetReadMostly,
cudaMemAdviseSetPreferredLocation,
cudaMemAdviseSetAccessedBy

• Pascal and later NVLINK supports native atomics in
hardware. PCI-e will have software-assisted atomics.

CUDA Unified Memory

37B4M35PAP Advanced Computer Architectures

Nvidia Pascal based TESLA P100

Pascal Architecture NVLink CoWoS HBM2 Page Migration Engine

Highest Compute
Performance

GPU Interconnect for
Maximum Scalability

Unifying Compute &
Memory in Single Package

Simple Parallel Programming
with Virtually Unlimited Memory

Space

Source: Tesla Volta / DGX-1v by Ralph Hinsche

• 3584 CUDA cores
• 4.7 FP64 TFLOPS

9.3 FP32 TFLOPS
• 160 GB/s NVLink

38B4M35PAP Advanced Computer Architectures

• 5,120 CUDA cores
• 640 NEW Tensor cores
• 7.5 FP64 TFLOPS

15 FP32 TFLOPS
• 120 Tensor TFLOPS
• 20MB SM RF 16MB Cache

16GB HBM2 @ 900 GB/s
• 300 GB/s NVLink

Nvidia Volta Based TESLA V100

Source: Tesla Volta / DGX-1v by Ralph Hinsche

39B4M35PAP Advanced Computer Architectures

OpenCL

• Is CUDA C the only possibility to accelerate computations?
• OpenCL – The open standard for parallel programming of

heterogeneous systems

void VecAdd(int n, float* A, float* B, float* C)
{

for(int i=0; i<n; i++)
C[i] = A[i] + B[i];

}

OpenCL:
kernel void VecAdd(global const float* A, global const

float* B, global const float* C)
{

int i= get_global_id(0);
C[i] = A[i] + B[i];

}

40B4M35PAP Advanced Computer Architectures

Jacket

• Matlab support

A = gdouble(B); % to push B to the GPU from the CPU
B = double(A); % to pull A from the GPU back to the CPU

X = gdouble(magic(3));
Y = gones(3, 'double');
A = X * Y

GPU_matrix = gdouble(CPU_matrix);
GPU_matrix = fft(GPU_matrix);
CPU_matrix = double(GPU_matrix);

41B4M35PAP Advanced Computer Architectures

Goose

Controlled by compiler directives

#pragma goose parallel for loopcounter(i, j)
for (i = 0; i < ni; i++)

for (j = 0; j < nj; j++)
for (k = 0; k < 3; k++)

C[k] = A[j][k] - B[i][k];

Also other frameworks available:
• PGI Accelerator
• CAPS HMPP
• Ct from Intelu
• Brook stream programming language (Stanford University)
• Support: Java, Python, C++, .NET, Mathematica

42B4M35PAP Advanced Computer Architectures

Is today support ideal?

• Control flow – instructions are executed in SIMD manner
across all threads of one warp. Divergent branch results
in creation of two separate thread groups which are
executed sequentially. Explicit synchronization point
(reconvergence point) can help to increase throughput.

• Memory – „intensity“ of memory accesses (mainly global)
• Data sharing – inter-threads communication
• It is necessary to consider the time spent on the efforts

made to achieve maximum throughput (optimization) vs.
time obtained by optimizing itself …

43B4M35PAP Advanced Computer Architectures

Applications

KRÜGER J., BÜRGER K., WESTERMANN R.: Interactive screen-space accurate photon
tracing on GPUs. In Eurographics Symposium on Rendering (June2006), pp. 319–329.

44B4M35PAP Advanced Computer Architectures

Applications

• linear algebra
• basic and partial differential equations (head conduction, fluids

flow, stress of mechanical structures, vibrations,..)
• signal processing,
• images processing,
• analysis of chemical compounds, drug search
• evolutionary and genetic algorithms
• optimizations
• neural networks
• drug research
• …

45B4M35PAP Advanced Computer Architectures

Neural network on CPU

Source of data: Zdeněk Buk

46B4M35PAP Advanced Computer Architectures

Neural network on GPU – CUDA

Source of data: Zdeněk Buk

47B4M35PAP Advanced Computer Architectures

References and Links

• Computer Organization and Design MIPS Edition,
6th Edition, The Hardware/Software Interface by
David Patterson John Hennessy ISBN:
9780128201091, Morgan Kaufmann, 2020
• Online appendix C: Graphics and Computing GPUs,

John Nickolls, Director of Architecture, NVIDIA, David
Kirk, Chief Scientist, NVIDIA

• OpenGL ES 3.0, Programming Guide, Second
Edition, Dan Ginsburg, Budirijanto Purnomo

• Linux Graphics Drivers: an Introduction, Version 3,
Stéphane Marchesin, 2012

• Imagination University Programme, Introduction to
mobile graphics architectures
https://vimeo.com/user128660478

	GPU (Graphics processing unit),GPGPU (General-purpose computing on GPU; General-purpose GPU)and GPU Computing
	Motivation
	Motivation 1
	Motivation 2
	Motivation 3
	More accurate results
	Motivation 4
	CPU vs. GPU
	Performance metrics – do you remember?
	Performance metrics – do you remember? 1
	3D graphics pipeline
	GPU
	OpenGL Pipeline
	GPU 1
	GPU 2
	GPU 4
	GPU - GeForce 8800
	GeForce 8800 – hardware limits
	GPU - GeForce 7800 – for comparison
	GPU - GeForce 7800
	CUDA (Compute Unified Device Architecture)
	CUDA (Compute Unified Device Architecture)
	CUDA – Threads, Blocks, Grid
	Slide 24
	CUDA – Memory Local, Shared, Global
	Memory model – Types
	CUDA – Declaration of Variables Placement
	CUDA C
	CUDA C
	CUDA C
	CUDA C
	CUDA C
	CUDA
	CUDA C
	Incrementing large array of elements – CUDA
	CUDA Unified Memory
	Nvidia Pascal based TESLA P100
	Nvidia Volta Based TESLA V100
	OpenCL
	Jacket
	Goose
	Is today support ideal?
	Applications
	Applications 1
	Neural network on CPU
	Neural network on GPU - CUDA
	References and Links

