VIR 2021
Midterm test
Variant: B
Name: \qquad
Points \qquad

1. MLE loss: You are given Laplace probability distribution model

$$
p(y \mid x, w)=\frac{1}{2} \exp (-|w x-b-y|)
$$

which models probability of variable $y \in \mathbb{R}^{+}$, given measurement $x \in \mathbb{R}$ and unknown model parameters $w, b \in \mathbb{R}$. You are given a training set $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)\right\}$. Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters w ? Simplify resulting optimization problem if possible.
2. Backprop and computational graph: Consider the following network

$$
y=(\sin (\mathbf{w}))^{\top} \mathbf{x}
$$

where $\sin (\mathbf{w})$ denotes element-wise function $\left[\sin \left(\mathbf{w}_{1}\right), \sin \left(\mathbf{w}_{2}\right)\right]^{\top}$. Consider an input $\mathbf{x}=$ $[2,1] \mathbf{w}=[\pi / 2, \pi]$ and label $l=1$.

- Draw the computational graph of the forward pass of this network. Preserve vectorized form, so that the vector \mathbf{w} correspond to a single edge in the graph.
- Compute the forward pass of the network in the computational graph.
- Use logistic loss $\mathcal{L}(y, l)=\ldots$ to compute the loss value between the forward prediction y and label l. Add this loss to the computational graph.
- Populate the computation graph by local gradients and use the chain rule to compute the gradient $\frac{\partial \mathcal{L}(y, l)}{\partial \mathbf{w}}$ and estimate an update of parameters \mathbf{w} with learning rate $\alpha=0.5$.

3. Convolution feedforward pass: You are given an input volume X of dimension $[$ batch \times channel \times width \times height $]=[4 \times 2 \times 13 \times 13]$
Consider a one 2D convolutional filter F of size $[$ width \times height $]=[5 \times 5]$

- Assuming a stride of 2 , What is the size of padding, which ensures that the feature map is size 7 x 7 of the input map? Note: A padding size of 1 for a [30×30] image gives it a resulting size of $[32 \times 32]$, in other words, zeros are added on both sides.
- Calculate the total memory in bytes of the learnable parameters of the filter, assuming that each weight is a dual-precision float (FP64).
- Calculate the amount of operations performed by a single application of the filter (just one "stamp"). Each addition or multiplication counts as a single operation. For example: $\alpha x+\beta y+c$ amounts to 2 multiplication and 2 addition operations, totaling 4 operations.
- Considering the entire input dimensions of X, given a stride of 2 , no padding, calculate the amount of filter applications ("stamps") that you have to perform to process the entire input.

4. Convolution in SGD: You are given convolutional network $y=f(\mathbf{x}, \mathbf{w}, \mathbf{v})$ consisting of two layers
5. convolutional layer with one 3×3 kernel (stride 1 , padding $=0$), with weights denoted \mathbf{w} (bias is completely ignored for simplicity)
6. convolutional layer with one 3×3 kernel (stride 1 , padding $=0$), with weights denoted \mathbf{v} (bias is completely ignored for simplicity)

- What is the dimensionality of input \mathbf{x} if output y is a scalar value?
- Let us assume that you initialized values of all kernels by zeros, such that $\mathbf{w}=\mathbf{0}$ and $\mathbf{v}=\mathbf{0}$. You are given a training set consisting of pairs of real-valued, finite inputs \mathbf{x}_{i} and corresponding real-valued scalar outputs y_{i}. You trained the network on the training set to minimize L_{2}-loss using Stochastic Gradient Descent (SGD). What relations (if any) will hold among trained weights after the training (assuming that the SGD converged to a finite values)? Proof your claims if possible.
Hint: Recall that, if you have convolutional layer $z=\operatorname{conv}(\mathbf{x}, \mathbf{w})$ followed by another layer $u=p(z)$, than gradient $\frac{\partial p(\operatorname{conv}(\mathbf{x}, \mathbf{w}))}{\partial \mathbf{w}}=\operatorname{conv}\left(\mathbf{x}, \frac{\partial p(\mathbf{z})}{\partial \mathbf{z}}\right)$, where $\frac{\partial p(\mathbf{z})}{\partial \mathbf{z}}$ denotes the upstream gradient. Similarly $\frac{\partial p(\operatorname{conv}(\mathbf{x}, \mathbf{w}))}{\partial \mathbf{x}}=\operatorname{conv}\left(\frac{\partial p(\mathbf{z})}{\partial \mathbf{z}}, \mathbf{w}\right)$ with padding corresponding to a desired gridient size. Look at backprop in computational graph.
- Let us assume, that we create new network $g\left(\mathbf{x}, \mathbf{w}_{1}, \ldots \mathbf{w}_{4}, \mathbf{v}_{1}, \ldots \mathbf{v}_{4}\right)$ by introducing additional kernels into convolutional layers of $f(\mathbf{x}, \mathbf{w}, \mathbf{v})$. What kind of function is g ? Can you replace g by a simplier function $\hat{g}(\mathbf{x}, \theta)$, that preserves expressing power of g : i.e. given any parameters $\mathbf{w}_{1}, \ldots \mathbf{w}_{4}, \mathbf{v}_{1}, \ldots \mathbf{v}_{4}$, there exists lower dimensional parameter θ such that

$$
g\left(\mathbf{x}, \mathbf{w}_{i}, \mathbf{v}_{j}\right)=\hat{g}(\mathbf{x}, \theta)
$$

for any possible \mathbf{x}. What lowest possible dimensionality of θ ?
5. Training: You are given a following figures of loss function over the training iterations.

- Explain for each of the figures, what might be happening to the model during the training based on these curves
- Propose at least a one way how to solve each of these issues.

2)

3)

