\qquad
Test 1
Time Limit:
Points:

1. Computational graph: Draw computational graph for the learning of the classifier $f(\mathbf{x}, \mathbf{w})=\mathbf{w}^{\top} \overline{\mathbf{x}}$ with the logistic loss.
Hint: Logistic loss of classifier output z for label y is $\mathcal{L}(y, z)=-\log (\sigma(y z))$, where σ is the sigmoid function $\sigma(x)=\frac{1}{1-e^{-x}}$.
2. Feed-forward pass: Compute feed-forward pass in the computational graph above (Question 1) with the following values: $\mathbf{w}=[-1,+1,0]^{\top}, \mathbf{x}=[2,1]^{\top}, y=-1$. Keep vector notation to keep the graph simple.
Hint: assign a variable to each edge and evaluate its value and write it directly into the computational graph. Make use of the following table:

v	-4	-3	-2	-1	0	1	2	3	4
$\sigma(v)$	0.02	0.05	0.12	0.27	0.5	0.73	0.88	0.95	0.98
$\log (\sigma(v))$	-4.02	-3.05	-2.13	-1.31	-0.69	-0.31	-0.13	-0.05	-0.02

- What is the output value of the feed-forward pass (i.e. the logistic-loss) for the given inputs

$$
\mathcal{L}=
$$

3. Backpropagation: Compute one iteration of the backpropagation algorithm in the computational graph above (Question 1), with the learning rate $\alpha=\frac{0.5}{0.27}$. One iteration consists of the following steps:
(i) compute gradient w.r.t \mathbf{w} by the backward-pass,
(ii) update weights \mathbf{w},
(iii) substitute updated weights and compute the value of the new logistic loss.

Hint: $\frac{d \sigma(z)}{d z}=\sigma(z)(1-\sigma(z))$

- What is the gradient (expression + value) of the back-propagated logistic loss?

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=
$$

- What are updated weights (expression + value) $\mathbf{w}^{\text {updated }}=$
- What is the value of the updated logistic loss?

4. Edge jacobians: You are given the following computational graph, where $\mathrm{W} \in \mathbb{R}^{4 \times 6}$, $\mathbf{u} \in \mathbb{R}^{4 \times 1}, \mathbf{y} \in \mathbb{R}^{17 \times 1}$ and $\overline{\mathbf{x}}$ denotes homogeneous coordinates and $\mathbf{w}=\operatorname{vec}(\mathrm{W})$.

- Fill in dimensionality of $\mathbf{x}, \mathbf{w}, \mathbf{z}, q, \mathcal{L}$ variables in the computational graph.
- Fill in dimensionality of the following edge gradients $\frac{\partial \mathcal{L}}{\partial q}, \frac{\partial q}{\partial \mathbf{z}}, \frac{\partial \mathbf{z}}{\partial \mathbf{w}}$.

- What is dimensionality of the following gradient $\frac{\partial \mathcal{L}}{\partial \mathbf{w}}$ (corresponding edge gradients are emphasized by the red color)?
- What is dimensionality of $\frac{\partial \mathcal{L}}{\partial \mathrm{y}}$?

5. ML regression: You are given probability distribution model $p(y \mid x, w)=x w \exp (-x w y)$, which models probability of variable $y \in \mathbb{R}^{+}$, given measurement $x \in \mathbb{R}$ and unknown model parameters $w \in \mathbb{R}$. You are given a training set $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)\right\}$. Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters w ? Simplify resulting optimization problem if possible.
