\qquad

Test 1

Time Limit:

1. Draw computational graph for the learning of the classifier $f\left(x,\left[w_{0}, w_{1}\right]\right)=w_{1} x+w_{0}$ with the logistic loss.
Hint: logistic loss of classifier output z for label y is $\mathcal{L}(y, z)=-\log (\sigma(y z))$.
2. Compute feed-forward pass with the following values: $w_{0}=-1, w_{1}=1, x=2, y=-1$. Hint: assign a variable to each edge and evaluate its value and write it directly into the computational graph. Make use of the following table:

v	-2	-1	0	1	2
$\sigma(v)$	0.12	0.27	0.5	0.73	0.88
$\log (\sigma(v))$	-0.92	-0.57	-0.3	-0.14	-0.06

- What is the value of the logistic-loss for given inputs

$$
\mathcal{L}=
$$

3. Compute one iteration of the backpropagation algorithm, with the learning rate $\alpha=1$. One iteration consists of the following steps:
(i) compute gradient wrt w_{0}, w_{1} by the backward-pass,
(ii) update weights w_{0}, w_{1} in order to decrease logistic-loss,
(iii) substitute updated weights and compute the value of the new logistic-loss (values of σ and \log for the updated feedforward pass are not in the table - just approximately guess the value of the resulting logistic loss).

Hint: $\frac{d \sigma(z)}{d z}=\sigma(z)(1-\sigma(z))$

- What is the gradient (expression + value) of the back-propagated logistic loss?
$\frac{\partial \mathcal{L}}{\partial w_{0}}=$
$\frac{\partial \mathcal{L}}{\partial w_{1}}=$
- What are updated weights (expression + value)
$w_{0}^{\text {updated }}=$
$w_{1}^{\text {updated }}=$
- What is the value of the updated logistic loss?

$$
\mathcal{L}^{\text {updated }}=
$$

