VIR 2018	Name:			
Test 1				
Time Limit:	Teaching Assistant			

1. Draw computational graph for the learning of the classifier $f(x, [w_0, w_1]) = w_1 x + w_0$ with the logistic loss. **Hint:** logistic loss of classifier output z for label y is $\mathcal{L}(y, z) = -\log(\sigma(yz))$.

2. Compute feed-forward pass with the following values: $w_0 = -1, w_1 = 1, x = 2, y = -1$. **Hint:** assign a variable to each edge and evaluate its value and write it directly into the computational graph. Make use of the following table:

v	-2	-1	0	1	2
$\sigma(v)$	0.12	0.27	0.5	0.73	0.88
$\log(\sigma(v))$	-0.92	-0.57	-0.3	-0.14	-0.06

• What is the value of the logistic-loss for given inputs

$$\mathcal{L} =$$

-

- 3. Compute one iteration of the backpropagation algorithm, with the learning rate $\alpha = 1$. One iteration consists of the following steps:
 - (i) compute gradient wrt w_0, w_1 by the backward-pass,
 - (ii) update weights w_0, w_1 in order to decrease logistic-loss,
 - (iii) substitute updated weights and compute the value of the new logistic-loss (values of σ and log for the updated feedforward pass are not in the table just approximately guess the value of the resulting logistic loss).

Hint: $\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$

• What is the gradient (expression + value) of the back-propagated logistic loss?

$$\frac{\partial \mathcal{L}}{\partial w_0} =$$
$$\frac{\partial \mathcal{L}}{\partial w_1} =$$

• What are updated weights (expression + value)

```
w_0^{\text{updated}} =
w_1^{\text{updated}} =
```

• What is the value of the updated logistic loss?

 $\mathcal{L}^{\rm updated} =$