VIR 2019	Name:
Exam test	
Variant: A	Points

1. **ML regression**: You are given probability distribution model $p(y|x, w) = xw \exp(-xwy)$, which models probability of variable $y \in \mathbb{R}^+$, given measurement $x \in \mathbb{R}$ and unknown model parameters $w \in \mathbb{R}$. You are given a training set $\mathcal{D} = \{(x_1, y_1) \dots (x_N, y_N)\}$. Write down the optimization problem, which corresponds to the maximum likelihood estimate of the model parameters w? Simplify resulting optimization problem if possible. 2. Recurrent network: Consider linear recurrent neural network with L2 loss depicted on the image below. The network is initialized with parameters $\theta_1 = 1, \theta_2 = -1, z_0 = 1$. You are given the following training sequence:

time=1	time=2
$x_1 = -2$	$x_2 = 1$
$y_1 = 1$	$y_2 = 3$

Estimate gradient of the overall loss (computed over all available outputs y_i for both available times i = 1, 2) with respect to θ_1 .

Hint: Unroll the network in time, to obtain a usual feedforward network with two loss nodes. Do the backpropagation as usual.

3. Batch-norm layer: You are given batch of two one-dimensional training examples $x_1 = 2, x_2 = 4$. The batch-norm layer has two learnable parameters $\gamma = 6, \beta = -1$. Compute jacobian of the batch-norm layer with respect to its parameters γ, β . Does the gradient depends on current values of γ, β ? How do you update γ, β (using the jacobian) to increase output values of the batch norm layer?

4. Consider the following network.

$$y = \sin(\mathbf{w}^{\top}\mathbf{x}) - b \tag{1}$$

• Draw the computational graph of the forward pass of this network. Note that **every** operator is a node with a given arity and output. For example, the + operator is a node which has two input arguments and a single output argument, etc...

- Consider an input $\mathbf{x} = [2, 1]\mathbf{w} = [\frac{\pi}{2}, \pi], b = 0$ and label l = 2.
 - Compute the forward pass of the network.

- Use an L_2 loss (Mean square error) to compute the loss value between the forward prediction y and label l. Add this loss to the computation graph.

- Use the chain rule to compute the gradient $\frac{\partial L(y,l)}{\partial \mathbf{w}}$ and estimate an update of parameters \mathbf{w} with learning rate $\alpha = 0.5$.

- 5. You are given a batch consisting of positive sample x_1 and negative samples x_2 , x_3 . Create a augmented version of positive sample \hat{x}_1 . Augmented version should be created with colourization technique by adding grayscale value of 0.5 for each pixel.
 - Draw a scheme of the contrastive learning of the model and output representation dimensions. Consider an positive sample x₁ = [2,1,3], negative samples x₂ = [1,2,1], x₃ = [1,2,3] and model as a one layer of 2D convolution with weights w = [1,1] and bias b = 0 and label l = 1.

• Calculate contrastive loss \mathcal{L} from model representations (model output features) consisting of L2 normalization in all samples. Loss should be minimized and summed across positive and negative training examples.

Choice: Alternatively, you can use softmax and cross entropy for loss calculation

• What is the dimension of loss for one sample?

- 6. You are given an input volume X of dimension $[batch \times width \times height \times channel] = [4 \times 13 \times 13 \times 2]$ Consider a 2D convolutional filter F of size $[width \times height] = [3 \times 3]$
 - Assuming a stride of [2,2], What is the size of padding, which ensures that the feature map is half the size of the input map? Note: A padding size of 1 for a $[30 \times 30]$ image gives it a resulting size of $[32 \times 32]$, in other words, zeros are added on both sides.
 - Calculate the total memory in bytes of the learnable parameters of the filter, assuming that each weight is a dual-precision float, aka 'double', aka FP64 which takes up 2 bytes each

Calculate the amount of operations performed by a single applciation of the filter (just one stamp). Each addition or multiplication counts as a single operation.
For example: αx + βy + c amounts to 2 multiplication and 2 addition operations, totaling 4 operations.

• Considering the entire input dimensions of X, given a stride of [2,2], no padding and only valid convolutions, calculate the amount of filter applications ("stamps") that you have to perform to process the entire input.