VIR 20	19
--------	----

Name: _____

Exam test

Variant: B

Points _____

1. Consider the following network.

$$y = \cos(\mathbf{w}^{\mathsf{T}}\mathbf{x}) + b \tag{1}$$

• Draw the computational graph of the forward pass of this network. Note that **every** operator is a node with a given arity and output. For example, the + operator is a node which has two input arguments and a single output argument, etc...

- Consider an input $\mathbf{x} = [0, 2]\mathbf{w} = [\pi, \frac{\pi}{2}], b = 1$ and label l = 1.
 - Compute the forward pass of the network.

- Use an L_2 loss (Mean square error) to compute the loss value between the forward prediction y and label l. Add this loss to the computation graph.

– Use the chain rule to compute the gradient $\frac{\partial L(y,l)}{\partial \mathbf{w}}$ and estimate an update of parameters \mathbf{w} with learning rate $\alpha = 0.8$.

- 2. Consider a convolutional neural network layer l_1 which maps an RGB image of size 256×256 to 16 feature maps having the half of the spatial dimensions as the image. The kernel size is 3×3 and uses a stride 2.
 - What is the size of padding, which ensure the same spatial resolution of the output feature map?
 - How much memory (in bytes) do kernel weights in layer l_1 take up, assuming float32 weights? Ignore the bias weights.

• How many mathematical operations does this layer perform for a single forward pass. A multiplication or addition of two numbers can be considered as one operation.

• Name a technique that improves the basic gradient descent update step which helps prevent getting stuck in shallow local minima and allows better training of deeper models.

- 3. Activation function maps single input \mathbf{x} on a single output value \mathbf{y} .
 - Define a Rectified Linear Unit $\mathbf{relu}(\mathbf{x})$ activation function in pseudocode. The function has a single argument \mathbf{x} and output $\mathbf{y} = \mathbf{relu}(\mathbf{x})$.

• Define the gradient of the $\mathbf{relu}(\mathbf{x})$ activation function in pseudocode. The function has a single argument \mathbf{x} and outputs $\frac{\partial relu(x)}{\partial \mathbf{x}}$. Hint: Break up the function into two separate cases (if-else).

- 4. You are given batch of three one-dimensional training examples $x_1 = 3, x_2 = 1, x_3 = 5$.
 - Compute output of the batch-norm layer with learnable parameters $\gamma=2,\,\beta=-3.$

• Compute gradient of the batch-norm layer with respect to the parameter β . **Hint:** output of the batch-norm layer for this batch is three-dimensional.

5. Consider MDP consisting of three states $\mathbf{x}_0 = 2$, $\mathbf{x}_1 = 4$, $\mathbf{x}_2 = 1$ and two types of actions $\mathbf{u} = 1$ and $\mathbf{u} = 2$, see image below. Agent selects action \mathbf{u} in the state \mathbf{x} according the following stochastic policy

$$\pi_{\theta}(\mathbf{u}|\mathbf{x}) = \begin{cases} \sigma(\theta\mathbf{x}) & \text{if } \mathbf{u} = 1\\ 1 - \sigma(\theta\mathbf{x}) & \text{if } \mathbf{u} = 2 \end{cases}$$

with scalar parameter $\theta = 3$. This policy maps one-dimensional state \mathbf{x} on the probability distribution of two possible actions $\mathbf{u} = 1$ or $\mathbf{u} = 2$.

Consider trajectory-reward function defined as follows:

$$r(\tau) = \sum_{\mathbf{x}_i \in \tau} \frac{1}{\mathbf{x}_i}$$

Given training trajectory $\tau = [(\mathbf{x}_0 = 2), (\mathbf{u} = 2), (\mathbf{x}_2 = 1)]$, which consists of the single transition (outlined by red color), estimate:

• Policy gradient

$$\frac{\partial \log \pi_{\theta}(\mathbf{u}|\mathbf{x})}{\partial \theta}\Big|_{\substack{\mathbf{x} = \mathbf{x}_0 \\ \mathbf{u} = \mathbf{u}_0}} \cdot r(\tau) =$$

• Updated weights with learning rate $\alpha = 0.5$