\qquad

Exam 1

Time Limit:

1. Consider the following network.

$$
\begin{equation*}
y=\sin \left(w_{1} \cdot x_{1}+w_{2} \cdot x_{2}\right)-b \tag{1}
\end{equation*}
$$

- Draw the computational graph of the forward pass of this network. Note that every operator is a node with a given arity and output. For example, the + operator is a node which has two input arguments and a single output argument, etc...
- Consider an input $x_{1}=2, x_{2}=1, w_{1}=\frac{\pi}{2}, w_{2}=\pi, b=0$ and label $l=2$.
- Compute the forward pass of the network.
- Use an L_{2} loss (Mean square error) to compute the loss value between the forward prediction y and label l. Add this loss to the computation graph.
- Use the chain rule to compute the gradient $\frac{\partial L(y, l)}{\partial \mathbf{w}_{1}}$.

2. Consider a convolutional neural network layer l_{1} which maps an $R G B$ image of size 128×128 to 16 feature maps having the same spacial dimensions as the image. The kernel size is 3×3 and uses a stride of 1 .

- How much memory (in bytes) do kernel weights in layer l_{1} take up, assuming float32 weights? Ignore the bias weights.
- How many mathematical operations does this layer perform for a single forward pass. A multiplication or addition of two numbers can be considered as one operation.
- Name one way that we can regularize (prevent overfitting) a large parametric model (for example a neural network).
- Define a Rectified Linear Unit relu(x) activation function in pseudocode. The function has a single argument \mathbf{x} and outputs relu(x).
- Define the gradient of the relu(x) activation function in pseudocode. The function has a single argument \mathbf{x} and outputs $\frac{\partial r e l u(x)}{\partial \mathbf{x}}$. Hint: Break up the function into two separate cases (if-else).
- Name an technique that improves the basic gradient descent update step which helps prevent getting stuck in shallow local minima and allows better training of deeper models.

3. Consider a perspective camera with center of projection \mathbf{C} and point \mathbf{X} from the following illustration:

(Field of view of the camera is outlined in gray.)
Assume we are given matrix of intrinsic camera parameters \mathbf{K}, camera rotation matrix \mathbf{R}, and translation vector t :

$$
\mathbf{K}=\left[\begin{array}{ccc}
500 & 0 & 500 \\
0 & 500 & 250 \\
0 & 0 & 1
\end{array}\right], \mathbf{R}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], \mathbf{t}=\left[\begin{array}{c}
-2 \\
0 \\
-1
\end{array}\right]
$$

where $\mathbf{X}_{c}=\mathbf{R} \mathbf{X}_{w}+\mathbf{t}$ converts world coordinates \mathbf{X}_{w} to camera coordinates \mathbf{X}_{c}.
a) Construct camera projection matrix $\mathbf{P} \in \mathbb{R}^{3 \times 4}$:

$$
\mathbf{P}=
$$

b) Project point \mathbf{X} into the camera ($\overline{\mathbf{X}}_{w}$ denotes homogeneous coordinates):

$$
\lambda\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\mathbf{P} \overline{\mathbf{X}}_{w}=\mathbf{P}\left[\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right]=
$$

c) What are pixel coordinates x, y of the projection?

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

