
Elasticsearch
B0M33BDT

Valerii Ulitin
15/12/2021

2

About me

Ing. Valerii Ulitin

valerii.ulitin@profinit.eu

linkedin.com/in/valerii-ulitin-005b7615a

Consultant

3

Content

1. General overview

2. Infrastructure
1. clusters
2. nodes
3. indices
4. shards

3. CRUD operations

4. Search, queries and aggregations
5. Mapping

General overview

5

Once upon a time…

› As any good story begins: “Once upon a time…”
– more precisely: in 1999, Doug Cutting created an open-source project called

Lucene

› Lucene is:
– a search engine library entirely written in Java
– a top-level Apache project, as of 2005
– great for full-text search

› But, Lucene is also:
– a library that you have to incorporate into your application
– challenging to use
– not originally designed for scaling

6

The Birth of Elasticsearch

› In 2004, Shay Banon developed a product called Compass
– built on top of Lucene, Shay’s goal was to have search integrated into Java

applications as simply as possible

› The need for scalability became a top priority
› In 2010, Shay completely rewrote Compass with two main

objectives:
– distributed from the ground up in its design
– easily used by any other programming language

› He called it Elasticsearch
– …and we all lived happily ever after!

› Today Elasticsearch is the most popular enterprise search engine

7

What is Elasticsearch?

› Elasticsearch is a distributed search and analytics engine for all
types of data, including textual, numerical, geospatial, structured,
and unstructured

› Key features of Elasticsearch:
– Distributed
– Scalable
– Fast
– Shipped with simple yet powerful REST API
– Easily used by any other programming languages
– Supports 34 text languages and provides analyzers for each

8

Are there others like Elasticsearch?

› The closest one is the Amazon OpenSearch Service

› Formerly known as Amazon Elasticsearch Service

› Isn’t it just Elasticsearch in disguise? Well… yes and no:
– it is a fork of older version of Elasticsearch (7.10.2), when it still was under

an open source license (Apache 2.0)
– because it is a fork it shares base functionality with Elasticsearch but with

every update it diverges further away from it

› You may consider Amazon OpenSearch service if:
– you already have other services running in AWS
– you are true open source sympathizer and would like to contribute one day

9

How Elasticsearch looks like

10

How Elasticsearch looks like #2

11

100+ nodes
cluster

Master nodes

Ingests nodes

Data nodes - Hot

Data nodes - WarmYour cluster can grow as your needs grow

Distributed search

1 node cluster 10 nodes cluster

Master nodes

Ingest node

Data nodes

A node is an instance
of Elasticsearch

A cluster is a collection
of Elasticsearch nodes

12

Java, .NET, PHP,
Ruby, Python, Perl

or whatever you
want!

Easily used by other programming languages

› Elasticsearch provides REST APIs for communicating with a cluster
over HTTP(S)
– allows client applications to be written in any language!

REST APIs
HTTP request

HTTP response

Client app

13

Elastic Stack (ELK)
› Elasticsearch is a distributed search and analytics engine for all types of data,

including textual, numerical, geospatial, structured, and unstructured
– reliably and securely take data from any source, in any format, as well as

search, analyze, and visualize it in real time

Ingest Store, search and analyze Visualize and manage

Beats

Logstash

Elasticsearch Kibana

Standalone (self managed) Elastic Cloud Enterprise (self managed) Elastic Cloud (SaaS)

14

Common use cases

› Application search

› Website search

› Enterprise search

› Logging and log analytics

› Infrastructure metrics and container monitoring
› Application performance monitoring

› Geospatial data analysis and visualization

› Security analytics

› Business analytics

Infrastructure

16

Zoo

› A cluster is a collection of Elasticsearch nodes

› A node is an instance of Elasticsearch

› An Elasticsearch index is a collection of documents that are
related to each other
– an index is a virtual namespace that points to a number of shards

› A shard is a worker unit that holds data and can be assigned to
nodes
– primary shards: the original shards of an index
– replica shards: copies of the primary shard

17

production_logging

Cluster

› Every node belongs to a single cluster
› A cluster is one or multiple nodes working together in a distributed

manner

node1

dev_sandbox

dev0

dev1 dev2

I am a node named
“node1” in the

“production_logging”
cluster

I am a node named
“dev1” in the

“dev_sandbox”
cluster

18

Node

› A node is an instance of Elasticsearch
– a Java process that runs in a JVM

› A node is typically deployed 1-to-1 to a host

node1 I am a node named
“node1”

19

Nodes and their roles

› There are several roles a node can have:
– master/master-eligible
– data
– ingest
– machine learning

› Nodes can take on multiple roles at the same time
– Or they can be dedicated nodes that only take on a single role

20

The Master Node

› Every cluster has one node designated as the master

› The master node is in charge of cluster-wide settings and changes,
like:
– creating, updating or deleting indices (incl. mappings and settings)
– adding or removing nodes
– allocating shards to nodes

my_cluster

node1

master

node2 node3

“How did you
get to be the

master?”

“I am the
master of this

cluster”

21

The Master-eligible Node

› The master node is elected from the master-eligible nodes in the
cluster
– a node is master-eligible if node.master* is set to true (the default value)
– only master-eligible nodes can vote

my_cluster

node1

master

node3node2

“Are there any
other master-

eligible nodes?”
“Me too. Let’s

vote!”

*the parameter is set in the elasticsearch.yml

“I am master-
eligible”

master-eligible master-eligible

22

Master Elections

› The number of votes to win the election is automatically handled by
Elasticsearch to ensure a quorum
– which is ⌊N/2 + 1⌋, where N is the number of master-eligible nodes

› It is important to have a quorum to avoid a "split brain"

my_cluster

node1

master

node3node2

“I vote for me”

“It looks like
node1 wins”

“I vote for
node1”

master-eligible master-eligible

23

my_cluster

Data Nodes

› Data nodes have two main features:
– they hold the shards that contain the documents you have indexed
– they execute data related operations like CRUD, search and aggregations

› All nodes are data nodes by default
› Data nodes are I/O, CPU, and memory-intensive

– it is important to monitor these resources and add more data nodes if they
are overloaded

node1

data

node2

data

node3

data

node4

data

“I am getting
overwhelmed!”

“Me, too.”

“It might be time
to add more
data nodes!”

“I have joined
to help!”

24

Ingest Nodes

› Ingest nodes provide the ability to
– pre-process a document right before it gets indexed

› All nodes are ingest nodes by default

Client app

node1

grok

ingest

setdate

{
“field1”: “value1”,
“field2”: “value2”,
“field3”: “value3”

}

When indexing a doc, you
can specify a pipeline

25

Shards and index relationship

› A shard is a worker unit that holds data and can be assigned to
nodes

› An index is a virtual namespace which points to a number of
shards
– an index is “split” into shards before any documents are indexed

my_cluster

node1
data allocation

node2
data allocation my_index

shard shard shard shard shard

26

Primary vs. Replica

› There are two types of shards
– primary shards: the original shards of an index
– replica shards: copies of the primary shard

› Documents are replicated between a primary and its replicas
– a primary and all replicas are guaranteed to be on different nodes

my_cluster

node1

P0

node3node2

R0
When an index is

created, shards are
numbered: 0, 1, 2, 3 …

Both P0 and R0 contain the
same documents. They are

called copies of shard 0

CRUD operations

28source:
https://www.jeopardy.com/jbuzz/behind-scenes/what-are-some-questions-about-jeopardy
https://g.cz/porad-riskuj-legendarni-televizni-soutez-ve-ktere-jste-mohli-vyhrat-pracku-i-felicii-v-kombiku/

dataset link: https://drive.google.com/file/d/0BwT5wj_P7BKXUl9tOUJWYzVvUjA/view?usp=sharing&resourcekey=0-
uFrn8bQkUfSCvJlmtKGCdQ

https://www.jeopardy.com/jbuzz/behind-scenes/what-are-some-questions-about-jeopardy
https://g.cz/porad-riskuj-legendarni-televizni-soutez-ve-ktere-jste-mohli-vyhrat-pracku-i-felicii-v-kombiku/
https://drive.google.com/file/d/0BwT5wj_P7BKXUl9tOUJWYzVvUjA/view?usp=sharing&resourcekey=0-uFrn8bQkUfSCvJlmtKGCdQ

29

Documents must be JSON Objects

› Imagine records that are currently in a database table:

› Each record needs to be converted to a JSON object:

Show
Number

Category Air Date Question Answer Value Round

6298 20th
CENTURY
WORDS &
PHRASES

2012-01-25 This word for a large self-service
store that sells household goods
as well as groceries hit the
shelves in 1933

a supermarket $600 Jeopardy!

3746 SECOND-
MOST
POPULOUS
CITIES

2000-12-11 Brno Czech Republic $1000 Double
Jeopardy!

{
"Show Number": 3746,
"Category": "SECOND-MOST POPULOUS CITIES",
"Air Date": "2000-12-11",
"Question": "Brno",
"Answer": "Czech Republic",
"Value": "$1000",
"Round": "Double Jeopardy!"

}

…and valuesJSON consists
of fields...

30

3
0

{
"Show Number": 3746,
"Category": "SECOND-MOST POPULOUS CITIES",
"Air Date": "2000-12-11",
"Question": "Brno",
"Answer": "Czech Republic",
"Value": "$1000",
"Round": "Double Jeopardy!"

}

Document Store

› Elasticsearch is a distributed document store
– it can store and return complex data structures that are

represented as JSON objects
› Adocument is a serialized JSON object that is stored in

Elasticsearch under a unique ID
A JSON object… …is stored in Elasticsearch as

a document

31

Documents are indexed into an index

› In Elasticsearch, a document is indexed into an index
– yes, index is uded as both a noun and a verb

jeopardy

my_cluster

jeopardy is an index

let’s index a document into
jeopardy

32

Index a document

› The Index API is used to index a document
– use a PUT or a POST and add the document in the body request
– notice that the index and an ID were specified
– if no ID is provided, Elasticsearch generates one for you

index name document ID

$ curl -X PUT "localhost:9200/jeopardy/_doc/2" -H 'Content-Type: application/json' -d'
{
"Show Number": 3746,
"Category": "SECOND-MOST POPULOUS CITIES",
"Air Date": ”2000-12-11",
"Question": "Brno",
"Answer": "Czech Republic",
"Value": "$1000",
"Round": "Double Jeopardy!"

}
'

document endpoint

33

Kibana Dev Tools

› Using curl all the time can be a bit tedious and convoluted

› Kibana has a developer tool named Console for creating and
submitting Elasticsearch requests in a simpler fashion

The Console syntax will be
used throughout this

presentation in examples

34

The response

Every document has a _version
The ID is stored in the _id field

201 response if successful

35

What if the document ID already exists?

› The document gets reindexed
– the new document overwrites the existing one

200 response
(instead of 201)

_version is incremented
“updated” instead of “created”

36

The _create endpoint

› If you do not want a document to be overwritten if it already
exists, use the _create endpoint
– no indexing occurs and returns a 409 error message

Fails if a document with
_id=2 is already indexed

37

Retrieving a document

› Use GET to retrieve an indexed document
– note that both the index and ID are specified
– response code is 200 if the document is found, 404 if not

“I am looking for
the record with

id=2”

The original document is
returned in the _source field

38

The _update endpoint

› If you want to update fields in a document, use the _update
endpoint
– make sure to add the “doc” context

update the “Air Date” field

_version is incremented

39

Deleting a document

› Use DELETE to delete an indexed document
– response code is 200 if the document is found, 404 if not

40

CRUD operations overiew

Index

POST faq/_doc
{

”question" : "Who writes Wikipedia?",
"answer": "Wikipedia is written and edited by volunteers from …"

}

PUT faq/_doc/4
{

"question" : "Who writes Wikipedia?",
"answer": "Wikipedia is written and edited by volunteers from …"

}

Create
PUT faq/_create/4
{

"question" : "Who writes Wikipedia?",
"answer": "Wikipedia is written and edited by volunteers from …"

}

Read GET faq/_doc/4

Update

POST faq/_update/4
{

"doc" : {
"answer" : "Wikipedia is written and edited by people"

}
}

Delete DELETE faq/_doc/4

Search, queries and aggregations

42

Search

› Search is asking questions and getting answers
› There are two main ways to search:

– queries
– aggregations

What documents have a
word “cat” in the question?

What are
categories with the
most questions?

Before & after,
science

Character who sang
"Smelly cat, smelly cat,
what are they feeding

you?”; proverbially
speaking, it "killed the cat"

43

Queries and aggregations

› What is the difference between queries and aggregations?

aggregation

query

aggregation

aggregation

44

Queries and aggregations request

› How to create an aggregation request?
– simply send a GET request using the _search endpoint

_search = the search endpoint

query = the query clauses to
match documents

aggs = the aggregation clauses
to summarize the data

Don’t worry about the
“keyword” here. We’ll
cover it a bit later.

45

Queries and aggregations response

hits = array containing
the documents that hit

the search criteria

buckets = array
containing the top

categories

46

A simple search

› Use a GET request sent to the _search endpoint
– every document is a hit for this search
– by default, Elasticsearch returns 10 hits

“I am looking for
any records”

total = the number
of documents that
were hits for this

query

took = the number
of milliseconds it

took to process the
query

hits = array containing the
documents that hit the

search criteria

47

Search examples

Query types

49

Types

› There are plenty of different query types for the _search endpoint

› We will cover just some of them:
– match query
– match_phrase query
– multi_match query
– bool query

› Although, other types can be found in the official documentation
– https://www.elastic.co/guide/en/elasticsearch/reference/current/query-

dsl.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

50

Match query

› Suppose we are interested in all the questions that mentioned
– “Czech republic”

› Let’s search for it in the “Question” field

› What do you think is required of a document to be a hit?

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query.html

51

Match query

› Suppose we are interested in all the questions that mentioned
– “Czech republic”

› Let’s search for it in the “Question” field

› By default, the match query uses “or” logic if multiple terms
appear in the search query
– any document with the term “Czech republic”, “Czech” or “republic”

in the “Question” field will be a hit

52

The match_phrase query

› The match_phrase query is for searching text when you want
to find terms that are near each other
– all the terms in the phrase must be in the document
– the position of the terms must be in the same relative order

The field you want to
search

The phrase you are
searching for

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html

53

Example of match_phrase

› Let’s try the “Czech republic” search using match_phrase instead
of match:
– only 31 hits (instead of 448 with match)
– be careful, relevant questions may be ommited, e.g. “The Romantic

nationalist composer Bedrich Smetana was born in 1824 in what's now this
republic”

– we got improved precision but recall is much worse now

Two things must happen for “Czech
republic” to cause a hit:

1. “Czech” and “republic” must
appear in the “Question” field

2. The terms must appear in that order
and next to each other

54

The multi_match query

› The multi_match query provides a convenient shorthand for
running a match query against multiple fields
– by default, Elasticsearch only considers the best scoring field when

calculating the _score (best_fields)

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-multi-match-query.html

55

Combining searches

› Suppose we want to write the following query:
– find questions about “beer” in the ”FOOD & DRINK” category

› This search is actually a combination of two queries:
– we need “beer” in the Question field,
– and “FOOD & DRINK” in the Category field

› How can we combine these two queries?
– by using Boolean logic and the bool query…

56

Bool query

› Each of the following clauses is possible (but optional) in a bool
query
– and they can appear in any order

Notice the JSON array
syntax. You can specify
multiple queries in each
clause if desired.

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html

57

The must clause

› The clause (query) must appear in
matching documents and will
contribute to the score

› Let’s go back to our search
– we are looking for questions with

“bear” that reside in the “FOOD &
DRINK” category

58

Other clauses

› “must_not”
– the clause (query) must not appear in the matching documents
– scoring is ignored, a score of 0 for all documents is returned

› “should”
– the clause (query) should appear in the matching document

› “filter”
– the clause (query) must appear in matching documents. However

unlike must the score of the query will be ignored.

› For more information reach out to the official Elastic documentation
about the bool query
– https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-

bool-query.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-bool-query.html

Aggregations

60

Aggregation types

› Metrics aggregations
– What is the total amount of prize money in the “Science” category?

› Bucket aggregations
– What are the top 5 most popular categories?

› Combining aggregations
– What is the total amount of prize money per each category?

› More about aggregation in the official documentation
– https://www.elastic.co/guide/en/elasticsearch/reference/current/search-

aggregations.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html

61

Aggregation syntax

› An aggregation request is a part of the SearchAPI
– with or without a “query” clause

The “aggs” clause can be
spelled out “aggregations”

Lots of different
aggregation types

The name you choose
comes back in the results

62

Aggregation example. Terms

› What is the total number of documents per each Value?

The “terms” aggregation
put all the documents into
buckets defined by a field

value

In this agg the number of
documents are collected
per each unique Value

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html

63

Aggregation results

› The response has an “aggregations” section that contains the
results of all the “aggs” in the search request

A list of top 10 buckets.
One bucket corresponds to

a one unique Value with
the total number of

documents in it

… and an “aggregations”
section in the response

We get the top 10 hits …

64

The scope of an aggregation

› You can add a query clause to an aggregation to limit the scope

What are the top 3
categories with questions
about the Czech republic

buckets field
consists of category
names and number
of documents in it

that satisfy the query

Mapping

66

What is Mapping?

› Elasticsearch will happily index any document without knowing its
details (number of fields, their data types, etc.)
– however, behind-the-scenes Elasticsearch assigns data types to your fields

in a mapping

› A mapping is a schema definition that contains:
– name of fields
– data types of fields
– how the fields should be indexed and stored by Lucene

› Mappings map complex JSON documents into the simple flat
documents that Lucene expects

67

Remember the odd “Category.keyword”?

› The one on the slide number 44

› Let’s have a closer look where
does it come from

68

Define a mapping

› In many use cases, you will need to define your own mappings

› Mappings are defined in the “mappings” section of an index:
– you can define mappings at index creation:

– or, add to a mapping of an existing index:

› More about mapping can be found in the documentation
– https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

69

Links

› Elasticsearch documentation
– https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

› Kibana documentation
– https://www.elastic.co/guide/en/kibana/current/index.html

› Information provided on slides was inspired by materials from
Elasticsearch Engineer training
– https://www.elastic.co/training/elasticsearch-engineer

https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://www.elastic.co/training/elasticsearch-engineer

70

Questions

Profinit EU, s.r.o., Tychonova 2, 160 00 Praha 6
Tel.: + 420 224 316 016, web: www.profinit.eu

LinkedIn
linkedin.com/company/profinit

Twitter
twitter.com/Profinit_EU

Facebook
facebook.com/Profinit.EU

Youtube
Profinit EU

Thank you

