
B(E)3M33UI — Exercise ML04:
Model evaluation and diagnostics.

Petr Pošík, Jiří Spilka

March 31, 2020

The learning goals of this exercise:

• learn about different performance evaluation metrics

• evaluate quality of models using different methods (holdout, cross-validation)

• gain insights into models using diagnostic tools (validation and learning curves)

1 Performance evaluation metrics

We are already familiar with two different metrics: mean square error for regression task and
zero-one error for classification task. In this exercise we further focus on the binary classifi-
cation only, i.e. y ∈ {0, 1}. A detailed information about classification performance provides
the so called confusion matrix that describes relationship between true class, y, and predicted
class by a model, ŷ.

predicted class

ŷ = 0 ŷ = 1

actual class
y = 0 True Negative (TN) False Positive (FP)

y = 1 False Negative (FN) True Positive (TP)

The prediction accuracy is then given by:

ACC =
TP + TN

TP + FN + FP + TN

Further, two additional metrics are widely used, true positive rate (TPR) and false positive
rate (FPR):

TPR =
TP

TP + FN
FPR =

FP
FP + TN

In the previous exercises, we measured the model error by our own implementation. Now, we
use the built-in facility of scikit-learn.

Task 1: In ML04-1.py use SVM classifier and evaluate its performance using confusion matrix,
accuracy, true positive rate, and false positive rate. Use the sklearn.metrics module and print
the results. Note that we still use the training data for evaluation!

Hints:

• Experiment with number of features included in the model. Which model is better, using
only few features or all available features?

1

https://en.wikipedia.org/wiki/Confusion_matrix
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics


Clearly. the confusion matrix depends on a single threshold used to decide if the example is
positive or negative. Receiver operating characteristic (ROC) is one of the graphical methods
to compare binary classifiers for different values of threshold and shows how performance
change with a change of threshold that is used to divide classes. ROC plots true positive rate
(TPR) on y axis and false positive rate (FPR) on x axis. An ideal classifier corresponds to a point
(0,1), i.e. TPR = 1, FPR = 0.

Task 2: Study the ROC and the documentation for metrics.sklearn.roc_curve. Plot a ROC
curve for SVM model.

Task 3: Experiment with different models (number of features, parameters). Setup several
models and compare them using ROC curves.

Hints:

• Study the function plot_roc() in plotting.py.

• You can compare several models of different kind, e.g. logistic regression, SVM, Linear
Discriminant Analysis etc., or you can compare the same type of model with different
settings, e.g. SVM with different kernels (linear, polynomial, rbf) and with different C, or
different kernel parameter gamma.

• Can you train a "perfect" model that has Area under ROC curve: AUC = 1? Again, try to
answer the question: Which model is better? Which one would you use?

2 Model evaluation

In the model evaluation we want to estimate predictive performance of a model given new,
previously unseen, data (i.e. we want to estimate performance when a model will be deployed
in practice). So far we have evaluated models on training data only and we have observed that
by tuning model parameters we can obtain correct classification without errors. However, this
does not provide information about predictive performance of the model.

2.1 Training / test split (hold out)

To get some insight, how well the model performs on new data, let’s split the data into training
and test sets. Then train (learn) models on training set and test it on the both.

Task 4: In ML04.py, fill in the code to split the data into training and testing data sets. Use the
function model_selection.train_test_split.

Hints:

• In the output of the scripts, check shapes of resulting Numpy arrays. Are they compati-
ble?

Task 5: In ML04.py, fill in the code to train the SVM on training data, and compute the accuracy
on both, training and testing. How do they compare? Do you like what you see?

2.2 k-fold cross-validation (CV)

Simple train/test split is used for initial analysis or for a large datasets where data are abun-
dant. However, when data are scarce we resort to k-fold cross-validation technique, where
training dataset is randomly split into k fold without replacement. Then k − 1 folds are used
for training and one fold is used for testing. The procedure is repeated k times.

2

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html


Task 6: In ML04.py, use the function sklearn.model_selection.cross_val_score to get the CV
estimate of SVM performance. You should get a list of the accuracies, one for each fold.

Task 7: Run the script several times. Do you see any fluctuations in the accuracy estimates for
train/test split and cross-validation?

Task 8: How do you judge the SVM model? Is it properly set?

3 Model tuning

By tuning a model we want to increase predictive performance of a model by selecting optimal
hyper-parameters (tweaking the learning algorithm) SVM models have several parameters that
are used to tune them. We have already mentioned them briefly above. You should also have
knowledge from the SVM lecture.

3.1 Manual tuning

Task 9: If you need to, check the different available kernels and meaning of C and gamma param-
eters: sklearn.svm.SVC

Task 10: Try to find a better setting for the C and gamma parameters of SVM by hand. What does
“a better setting” actually mean?

3.2 Automatic tuning via grid search

Clearly, to guess the best parameters manually is impractical. Let’s try to use one of the auto-
matic techniques, grid search, to find optimal SVM’s parameters.

Task 11: Learn about the GridSearchCV() function in the documentation.

Task 12: Use the GridSearchCV() to find near-optimal values of C and gamma for SVM with RBF
kernel. Use only the training part of data to search for the parameters values!

Task 13: Print out the scores of the final classifier on training and testing data.

Dealing the datasets correctly with respect to the learning algorithms is a crucial thing in
data analysis. Think about it thoroughly!

4 Model diagnostics

For educational purposes we will use a synthetic Ripley’s dataset here instead of the auto-
mpg dataset. The dataset is composed of two classes, where each comes from bimodal normal
distribution with the same variance of 0.04. Positive cases are generated from: µ+

1 = [0.4, 0.7],
µ+

2 = [−0.3, 0.7] and negative cases from: µ−3 = [−0.7, 0.3], µ−4 = [0.3, 0.3]. The dataset is
represent by features X1 and X2.

Task 14: Run the script ML04-2.py to have an idea how the dataset looks like.

3

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html#sklearn.model_selection.cross_val_score
http://scikit-learn.org/stable/modules/svm.html#svm-kernels
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


4.1 Learning curves

Learning curve is a technique that help us to diagnose if a learning algorithm has a problem
with underfitting (high bias) or overfitting (high variance). Further, it can be used to investigate
if obtaining more data samples would help to reach better performance for a given algorithm.

Task 15: The script ML04-2.py only plots a learning curve but its computation is not imple-
mented yet. Implement function compute_learning_curve() that takes the following argu-
ments:

• selected model and tr_sizes (the sizes of training data that are used to train model)

• Xtr,ytr,Xtst,ytst training/test data and labels

• Output 1: train_errors an array corresponding to the number of training examples

• Output 2: test_errors an array corresponding to the number of training examples

Hints:

• To simulate the increasing training dataset size, the function uses increasingly larger part
of the training data.

• To compute the error, you can use the function 1 - metrics.accuracy_score().

Task 16: Try to display the learning curve several times, it is a stochastic process. Try to display
learning curves for different classifiers, e.g. use SVM with C = 1 and change the parameter
gamma. Can you provide examples of underfitting, overfitting, and optimal classifier? For which
classifier it would be helpful to get more data?

5 Validation curves

Validation curves are very closely related to learning curves but instead of plotting the error as
function of training sizes, the error is plotted as a function of model parameters (e.g. gamma for
SVM). The validation curve thus provide information about underfitting and overfitting with
respect to the model parameters.

Task 17: Implement computation of validation curve (compute_validation_curve()) that takes
the following arguments:

• selected model, parameter name param_name and parameter values param_range

• Xtr,ytr,Xtst,ytst training/test data and labels

• Output 1: train_errors an array corresponding to the values of the parameter

• Output 2: test_errors an array corresponding to the values of the parameter

Task 18: Try to play with the validation curves, e.g. use SVM and vary parameter gamma. Try to
interpret the results and identify regions of underfitting. overfitting, and optimal performance.

6 Have fun!

Complete the exercise as a homework, ask questions on the forum, and upload the solution
via Upload system (BRTUE)!

4


	Performance evaluation metrics
	Model evaluation
	Training / test split (hold out)
	k-fold cross-validation (CV)

	Model tuning
	Manual tuning
	Automatic tuning via grid search

	Model diagnostics
	Learning curves

	Validation curves
	Have fun!

