
B(E)3M33UI — Scheduling:
Critical Path Method

Radek Mařík, Jiří Spilka

May 21, 2019

1 Critical Path Method (CPM)

The goal of this task is to become familiar with scheduling, specifically with Critical Path
Method (CPM) used heavily to schedule project activities. A critical path is determined by
identifying the longest stretch of dependent activities and measuring the time required to com-
plete them from start to finish.

A model of the project requires the following list:

• A list of all activities required to complete the project (typically categorized within a work
breakdown structure)

• The time (duration) that each activity will take to complete

• The dependencies between the activities

Task 1: Design a non-trivial process with the following constraints.

Constraints on the process:

• The process is non-trivial.

• Contains at least 10 activities.

• The sequence of activities is not linear.

Examples:

• Bike, PC, building construction

• Rock climbing

• Cooking recipe

• Software development plan.

• Soldier’s operation schedule

1



First, we will use the simple example from lectures to compute the critical path for jobs pro-
cessing times given by the following graph with node encoding (jobId/pj):

jobs 1 2 3 4 5 6 7 8 9
pj 4 9 3 3 6 8 8 12 6

Notation

• Forward procedure:

– pj – procedure time of jobs j
– S

′
j – the earliest possible start time of job j

– C
′
j – the earliest possible completion time of job j

– C
′
j = S

′
j + pj

– {all k → j} jobs that are predecessors of job j

• Backward procedure:

– S
′′
j – the latest possible start of job j

– C
′′
j – the latest possible completion time of job j

– {j → all k} jobs that are successors of job j

We will use the networkx to represent a graph. The nodes of the graph can be any object, e.g.
cpm.add_node(1,p=5),cpm.add_node(2,p=5). This creates nodes with integer indices that can be
further accessed as cpm.node[1]. The edges are then defined using cpm.add_edges_from([(1,2)]).

Task 2: Implement the forward and backward procedure in the module cpm.py

Hints:

• Use nx.topological_sort

• Use method predecessors/successors to get predecessors/successors nodes for node n.

• Use nx.get_node_attributes to get nodes attributes from all nodes, e.g. from Cj.

Task 3: Implement function _compute_critical_path in cpm.py

Hints:

• Save the nodes that are on critical path and then use the function subgraph (self.subgraph).

Task 4: Use the implemented CPM on your own non-trivial process.

2 Have fun!

Complete the exercise as a homework, ask questions on the forum, and upload the solution
via the BRUTE!

2


	Critical Path Method (CPM)
	Have fun!

