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Based on your current knowledge and intuition, which of the following options is the best
characterization of deep learning (DL) and its relation to machine learning (ML)?

A DL is any ML process that requires a deep involvement of a human designer in ex-
tracting the right features from the raw data.

B DL is any solution to a ML problem that uses neural networks with a few, but very
large hidden layers.

C DL is a set of ML methods allowing us not only to solve the problem at hand, but also
gain deep understanding of the solution process.

D DL is any method that tries to automatically transform the raw data into a represen-
tation suitable for the solution of our problem, often at multiple level of abstraction.
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Conventional ML techniques:

■ Limited in their ability to process natural data in their raw form.

■ Successful applications required careful engineering and human expertise to extract
suitable features.

Representation learning:

■ Set of methods allowing a machine to be fed with raw data and to automatically
discover the representations suitable for correct classification/regression/modeling.

Deep learning:

■ Representation-learning methods with multiple levels of representation, with
increasing level of abstraction.

■ Compose simple, but often non-linear modules transforming the representation at
one level into a representation at a higher, more abstract level.

■ The layers learn to represent the inputs in a way that makes it easy to predict the
target outputs.
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■ 1940s: Model of neuron (McCulloch, Pitts)

■ 1950-60s: Modeling brain using neural networks (Rosenblatt, Hebb, etc.)

■ 1969: Research stagnated after Minsky and Papert’s book Perceptrons

■ 1970s: Backpropagation

■ 1986: Backpropagation popularized by Rumelhardt, Hinton, Williams

■ 1990s: Convolutional neural networks (LeCun)

■ 1990s: Recurrent neural networks (Schmidhuber)

■ 2006: Revival of deep networks, unsupervised pre-training (Hinton et al.)

■ 2013-: Huge industrial interest
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■ Narrow vs wide: Refers to the number of units in a layer.

■ Shallow vs deep: Refers to the number of layers.
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■ Narrow vs wide: Refers to the number of units in a layer.

■ Shallow vs deep: Refers to the number of layers.

Making a deep architecture:

■ A classifier uses the original representation:

x1

x2

x3

x4

Input
layer

ŷ1

Output
layer

■ A classifier uses features which are derived from the original representation:

■ A classifier uses features which are derived from the features derived from the
original representation:
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■ Narrow vs wide: Refers to the number of units in a layer.

■ Shallow vs deep: Refers to the number of layers.

Making a deep architecture:

■ A classifier uses the original representation:

■ A classifier uses features which are derived from the original representation:
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■ A classifier uses features which are derived from the features derived from the
original representation:
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■ Narrow vs wide: Refers to the number of units in a layer.

■ Shallow vs deep: Refers to the number of layers.

Making a deep architecture:

■ A classifier uses the original representation:

■ A classifier uses features which are derived from the original representation:

■ A classifier uses features which are derived from the features derived from the
original representation:
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Sometimes, even shallow architectures can do surprisingly well!

Representation of text (words, sentences):

■ Important for many real-world apps: search, ads recommendation, ranking, spam
filtering, . . .

■ Local representations (a concept is represented by a single node):

■ N-grams, 1-of-N coding, Bag of words

■ Easy to construct.

■ Large and sparse.

■ No notion of similarity (synonyms, words with similar meaning).

■ Distributed representations (a concept is represented by a pattern of activations
across many nodes):

■ Vectors of real numbers in a high-dimensional continuous space (but much less
dimensional than 1-of-N encoding).

■ Not clear how to meaningfully construct such a representation.

■ The size is tunable, but much smaller than that of local representations; dense.

■ Similarity well defined: synonyms should be in the same area of the space.

Assumption: meaning can be defined by the word context, i.e. words that surround it.
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Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013

■ Continuous bag of words (CBOW): Predict the current word based on the context
(preceding and following words).

■ Skip-gram: Predict the context (surrounding words) given the current word.

■ The transformation of local to distributed representation is shared among all words!

■ Trained using SGD with BP on huge data sets with billions of word n-grams, and
with millions of words in the vocabulary!
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Tomas Mikolov et al.: Distributed Representations of Words and Phrases and their Compositionality. 2013

■ Countries are found in one area, capitals in another.

■ The difference vectors of countries to capitals are almost the same!

■ The places roughly progress from Asia, through middle east, eastern Europe, to
western Europe!
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Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013
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Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013
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Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013

■ Trained on a lot of data!

■ Turns out that similar results can be obtained by SVD factorization of (the log of) the
matrix of counts of co-occurence of words and phrases.

■ Statistical learning can be much better than people expect! Sometimes even with a
shallow architecture!

■ Features derived by word2vec used across many big IT companies in plenty of apps
(adds, search, ...)
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Universal approximation theorem:

■ A multilayer perceptron with a single hidden layer with a sufficient (but finite)
number of hidden units can approximate any continuous function with arbitrary
precision (under some mild assumptions on the activation functions).

■ Why bother with deeper networks?

The theorem says nothing about

■ the efficiency of such a representation (there are functions which – when represented
by a shallow architecture – require exponentially more units compared to deep
architecture), and

■ the efficiency of learning such a wide and shallow network from data.

When solving an algorithmic problem, we usually

■ start by solving sub-problems, and then

■ gradually integrate the solutions.

We build the solution through multiple layers of abstraction.
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Deep architectures:

■ Not a new idea. Maybe 50 years old.

■ Hard/impossible to train until recently.

What makes deep networks hard to train?

■ Not an easy answer, subject of ongoing research.

■ Instabilities associated to gradient-based learning (vanishing/exploding gradients).

■ The choice of activation function.

■ Weights initialization.

■ Details of implementation of gradient descent (momentum schedule).

■ The choice of network architecture and hyper-parameters.

Vanishing gradient

■ Backpropagation is ”just”a clever use of chain rule.

■ During error backpropagation, the multiplication by the derivative of the activation
function is used many times.

■ The derivative of the “standard” sigmoidal function is from 〈0, 0.25〉.

■ The size of error deminishes when propagating towards the input layer, and quickly
becomes very small.

■ The learning in the initial layers of deep neural network is very slow; these layers
learn virtually nothing (unless trained for a very looooong time).

■ Exploding gradient is exactly the opposite problem.
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Factors of the deep nets boom in the last decade:

■ Big data era. Building models with millions of parameters started to make sense.

■ Fast GPUs. Training such large models started to be feasible.

■ Weight sharing. Not that many parameters are actually needed.

■ Unsupervised pre-training. For areas where not enough data is available.

■ Data augmentation. Artificially created training examples by
deforming/moving/rotating the available ones.

■ Regularization. Especially using drop-out.

■ ReLU. Usually makes backpropagation faster.
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■ Unsupervised learning. (Or, rather “self-supervised”?)

■ Networks trained to map input vector on the same output vector.

■ Reconstruction error is minimized.

■ Performs dimensionality reduction.

■ Hidden layer contains less neurons than input and output layers.

■ Hidden neurons contain compressed representation of the input examples.

x1

x2

x3

x4

x̂1

x̂2

x̂3

x̂4

petr.posik@fel.cvut.cz


Stacked autoencoders

Deep Learning

• Quiz

• Definition

• History

• Terminology

• Ex: Word embed.

• Ex: w2v arch.

• Ex: w2v results

• Why deep?

• A new idea?

• Boom of Deep Nets

• Autoencoders

• Stacked autoenc.

• Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Summary
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1. Train the first hidden layer of an autoencoder.

2. Split the first hidden layer to encoder and decoder, keep them fixed and train the
second hidden layer.

3. Split the second hidden layer to encoder and decoder, keep them fixed and train the
third hidden layer.

4. . . .

x1

x2

x3

x4

x5

x̂1

x̂2

x̂3

x̂4

x̂5
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1. Train the first hidden layer of an autoencoder.

2. Split the first hidden layer to encoder and decoder, keep them fixed and train the
second hidden layer.

3. Split the second hidden layer to encoder and decoder, keep them fixed and train the
third hidden layer.

4. . . .
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x̂1
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x̂3

x̂4

x̂5

■ Always training only a single layer - building a deep architecture one step at a time.

■ Vanishing gradients are not an issue.
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■ Use stacked autoencoders to pre-train the first layers of the network.

■ Use the encoding part of the network, and attach a classifier for your particular task.

■ Train the attached part of the network (and fine tune the encoder weights) by
backpropagation.

x1

x2

x3

x4

x5

ŷ1
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■ Use stacked autoencoders to pre-train the first layers of the network.

■ Use the encoding part of the network, and attach a classifier for your particular task.

■ Train the attached part of the network (and fine tune the encoder weights) by
backpropagation.

x1

x2

x3

x4

x5

ŷ1

An example of Transfer learning:

■ Using certain part of a model trained for one task as the basis of a model performing
another, but related task.
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Image processing by NN:

■ Imagine you would like to classify 28 × 28 gray scale images.

■ You would like to use an MLP with a single hidden layer of the same size and fully
connected to the input layer.

■ What is the number of connections (weights that must be trained) between input and
hidden layers?

A 28 × 28 = 784

B 282 × 282 = 614656

C 282 × (282 + 1) = 615440

D (282 + 1)× (282 + 1) = 616225
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Fully-connected architecture:

■ Input layer neurons are directly connected to the image pixels.

■ Let’s have a hidden layer with approx. the same size as the input layer fully connected
to the input layer:

■ Small image size: 28 × 28 pixels (= number of input neurons).

■ Hidden layer with the same number of neurons (282).

■ Number of weights ≈ 600 thousands.

■ Repeat several times, if you want a deep architecture.

■ Too many parameters to learn!

■ Ignores spatial structure of the images:

■ Treats the input pixels far/close to each other in exactly the same way:

■ Sensitive to movements of the object in the image.
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Fully-connected architecture:

■ Input layer neurons are directly connected to the image pixels.

■ Let’s have a hidden layer with approx. the same size as the input layer fully connected
to the input layer:

■ Small image size: 28 × 28 pixels (= number of input neurons).

■ Hidden layer with the same number of neurons (282).

■ Number of weights ≈ 600 thousands.

■ Repeat several times, if you want a deep architecture.

■ Too many parameters to learn!

■ Ignores spatial structure of the images:

■ Treats the input pixels far/close to each other in exactly the same way:

■ Sensitive to movements of the object in the image.

Convolutional networks solve these issues by

■ local receptive fields,

■ shared weights, and

■ pooling.
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■ Each hidden unit is connected to only a few inputs localized in a small window.

Michael A. Nielsen, ”Neural Networks and Deep Learning”, Determination Press, 2015

■ This window is the local receptive field.

■ The window then “slides” across the entire image.

■ Each of its positions corresponds to a hidden neuron.

■ Stride length: The number of pixels by which the window moves in each step.

■ Number of weights:
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■ Each hidden unit is connected to only a few inputs localized in a small window.

Michael A. Nielsen, ”Neural Networks and Deep Learning”, Determination Press, 2015

■ This window is the local receptive field.

■ The window then “slides” across the entire image.

■ Each of its positions corresponds to a hidden neuron.

■ Stride length: The number of pixels by which the window moves in each step.

■ Number of weights: 242
︸︷︷︸

Outputs

( 52
︸︷︷︸
Inputs

+ 1︸︷︷︸
Biases

) ≈ 15 thousands
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■ Each hidden unit is connected to only a few inputs localized in a small window.

Michael A. Nielsen, ”Neural Networks and Deep Learning”, Determination Press, 2015

■ This window is the local receptive field.

■ The window then “slides” across the entire image.

■ Each of its positions corresponds to a hidden neuron.

■ Stride length: The number of pixels by which the window moves in each step.

■ Number of weights: 242
︸︷︷︸

Outputs

( 52
︸︷︷︸
Inputs

+ 1︸︷︷︸
Biases

) ≈ 15 thousands

■ Multiple input channels: e.g., in case of color image, we have 3 intensity images (for
colors R, G, B).
Number of weights:
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■ Each hidden unit is connected to only a few inputs localized in a small window.

Michael A. Nielsen, ”Neural Networks and Deep Learning”, Determination Press, 2015

■ This window is the local receptive field.

■ The window then “slides” across the entire image.

■ Each of its positions corresponds to a hidden neuron.

■ Stride length: The number of pixels by which the window moves in each step.

■ Number of weights: 242
︸︷︷︸

Outputs

( 52
︸︷︷︸
Inputs

+ 1︸︷︷︸
Biases

) ≈ 15 thousands

■ Multiple input channels: e.g., in case of color image, we have 3 intensity images (for
colors R, G, B).
Number of weights: 242

︸︷︷︸
Outputs

(3 · 52
︸ ︷︷ ︸
Inputs

+ 1︸︷︷︸
Biases

) ≈ 45 thousands
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■ Each hidden neuron has bias and 5 × 5 weights.

■ All hidden neurons use the same weights and bias, they define a filter!

■ The output of the hidden neuron at (r, c) is

zr,c = g

(
b +

4

∑
j=0

4

∑
k=0

wj,kxr+j,c+k

)
,

where wj,k are the shared weights, b is the shared bias, and g is the activation function
(sigmoid, ReLU, . . . ).

■ The sum is closely related to the operation of convolution, hence the name.
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■ Each hidden neuron has bias and 5 × 5 weights.

■ All hidden neurons use the same weights and bias, they define a filter!

■ The output of the hidden neuron at (r, c) is

zr,c = g

(
b +

4

∑
j=0

4

∑
k=0

wj,kxr+j,c+k

)
,

where wj,k are the shared weights, b is the shared bias, and g is the activation function
(sigmoid, ReLU, . . . ).

■ The sum is closely related to the operation of convolution, hence the name.

■ In case of multiple input channels:

zr,c = g

(
b +

2

∑
i=0

4

∑
j=0

4

∑
k=0

wi,j,kxi,r+j,c+k

)
.

■ Number of parameters:
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■ Each hidden neuron has bias and 5 × 5 weights.

■ All hidden neurons use the same weights and bias, they define a filter!

■ The output of the hidden neuron at (r, c) is

zr,c = g

(
b +

4

∑
j=0

4

∑
k=0

wj,kxr+j,c+k

)
,

where wj,k are the shared weights, b is the shared bias, and g is the activation function
(sigmoid, ReLU, . . . ).

■ The sum is closely related to the operation of convolution, hence the name.

■ In case of multiple input channels:

zr,c = g

(
b +

2

∑
i=0

4

∑
j=0

4

∑
k=0

wi,j,kxi,r+j,c+k

)
.

■ Number of parameters: (3 · 52
︸ ︷︷ ︸
Inputs

+ 1︸︷︷︸
Bias

) = 76

■ All the neurons in the hidden layer detect exactly the same feature, just at different
locations in the input image.
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We know how to

■ turn the input image represented as a volume (3 channels × width × height) into

■ a single feature map (how much is a feature expressed on all places of the image)

■ using a single filter.
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We know how to

■ turn the input image represented as a volume (3 channels × width × height) into

■ a single feature map (how much is a feature expressed on all places of the image)

■ using a single filter.

Convolutional layer:

■ For a reliable image recognition we need more than one feature maps using many
different filters (tens, hundreds, . . . ).

■ “It processes volume into volume”.

Michael A. Nielsen, ”Neural Networks and Deep Learning”, Determination Press, 2015
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An example of 20 filters for the MNIST number database (see also Wikipedia):

Michael A. Nielsen, ”Neural Networks and Deep Learning”, Determination Press, 2015

These filters were

■ not hand-crafted,

■ but automatically trained!

petr.posik@fel.cvut.cz
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Pooling layers:

■ Usually used immediately after convolutional layers.

■ They simplify the information in the output of the convolutional layer by creating a
condensed feature map.

■ Max-pooling:

■ Each unit in pooling layer summarizes a region of, say, 2 × 2 neurons in the
previous layer by taking the maximum of the entries.

■ It reduces the size of the feature map by a factor of 2 × 2 = 4.

Michael A. Nielsen, ”Neural Networks and Deep
Learning”, Determination Press, 2015

■ Pooling is usually applied to each of the channels separately.

■ Other types of pooling exist: L2 pooling, average pooling, . . .
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An example of a complete ConvNet applied to MNIST classification:

■ A classification of 28 × 28 grey-scale bitmap images into 10 classes (numbers 0 - 9).

Michael A. Nielsen, ”Neural Networks and Deep Learning”, Determination Press, 2015

■ The input 28 × 28 layer encodes pixel intensities for MNIST images.

■ The first hidden layer is convolutional with 5 × 5 receptive field and 20 filters
resulting in 20 × 24 × 24 hidden feature neurons.

■ The second hidden layer is max-pooling with 2 × 2 regions; the result is 20 × 12 × 12
hidden feature neurons.

■ These are fully connected to the final “classifier” with 2 layers of 100 and 10 output
neurons (because the MNIST dataset contains 10 classes).

■ You can stack more convolutional and pooling layers one after another!

■ The whole network is trained by GD with backpropagation.
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■ High-resolution color images: 15M images, 22k classes

■ ImageNet Large Scale Visual Recognition Challenge (ILSVRC) uses subset of
ImageNet: 1.3M training, 50k validation, 100k testing samples, 1000 classes

■ Some images contain more than 1 object.

■ Top 5: an algorithm is considered correct if the actual ImageNet classification was
among the 5 classifications the algorithm considered most likely.
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AlexNet: Breakthrough of ConvNets in computer vision!

■ Top-5 error rate of AlexNet: 15.3 %, the second best entry: 26.2 %

Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012
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Structure:
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Structure:

Filters learned at the first hidden layer:

Both pictures from Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012
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ILSVRC 2012: Alexnet’s Top-5 error rate 15.3 %

■ Two separate data flows for 2 GPUs, 60M parameters.

■ ReLUs, dropout.

ILSVRC 2013: ZFNet’s Top-5 error rate 11.2 %

■ Larger number of smaller filters, deeper.

ILSVRC 2014: VGG Net’s Top 5 error rate 6.8 %

■ 22 layers of neurons

ILSVRC 2014: GoogLeNet’s Top 5 error rate 6.66 %

■ More than 30 layers of neurons.

■ Inception modules instead of convolutional (a module containing several
convolutional layers with small filters, and pooling).

■ Only 5M parameters (compared to 60M of AlexNet)

■ Human error rate (not easily obtainable) is 5.1 %

ILSVRC 2015: ResNet’s Top 5 error 3.6 %

■ 152 layers (2-3 weeks on 8 GPUs)

■ Skip connections: each layer is trained to residuals of the previous layer.
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Memory:

■ Feedforward NNs (including ConvNets) do not have a memory:

■ Fixed-sized vector as input (e.g. an image), fixed-sized vector as output (e.g.
probabilities of different classes).

■ Fixed amount of computational steps (e.g. the number of layers in the model).

■ In real world, reasoning is a lot about memory, context, thought persistance.

■ Even if your inputs/outputs are fixed vectors, it is still possible to process them in a
sequential manner.

Recurrent Neural Networks (RNNs):

■ Allow us to operate over sequences of vectors.

■ Feedback loops in network implement the concept of memory.

■ A part of network A transforms the current input xt and the
previous network state into the network output.

RNN unrolled in time: multiple copies of the same network, each passing a message to a
successor:

Both pictures from Christopher Olah: Understanding LSTMs
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Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks

1. Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized
output (e.g. image classification).

2. Sequence output (e.g. image captioning takes an image and outputs a sentence of
words).

3. Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment).

4. Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French).

5. Synced sequence input and output (e.g. video classification where we wish to label
each frame of the video).

. . . speech recognition, language modeling, machine translation, attention modeling, . . .

petr.posik@fel.cvut.cz
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Backprop through time (BPTT):

■ A method to compute the gradients for weights of RNNs.

■ Unroll the network several steps in time:

Christopher Olah: Understanding LSTMs

■ This can be viewed as a “normal” feedforward network with the same weights in all
the layers.

■ BPTT is equivalent to normal BP on unfolded networks, with the exception that the
gradients for a particular weight are sumed over the layers.

petr.posik@fel.cvut.cz
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Dependencies: RNNs connect previous information to the present task, e.g.

■ previous video frames help us understand the present frame,

■ a language model predicts the next word based on previous ones, . . .

Short-term dependencies: easy for vanilla RNNs.

■ Predict the last word in the sequence “the clouds are in the [sky]”.

■ The gap between relevant information and the place it is needed is small.

Long-term dependencies: hard for vanilla RNNs, special units required.

■ Predict the last word in the sequence “I was born in France. Blah blah blah . . . blah. I
speak fluently [French].”

■ In theory, vanilla RNNs are absolutely capable of handling such long-term
dependencies.

■ In practice, RNNs don’t seem to be able to learn them.

Christopher Olah: Understanding LSTMs
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P. Pošı́k c© 2020 petr.posik@fel.cvut.cz Artificial Intelligence – 36 / 44

LSTM Networks:

■ Special kind of RNN explicitly designed to be capable of learning long-term
dependencies.

■ Introduced by Hochreiter and Schmidhuber in 1997.

■ In practice, all the successfull applications of RNNs were achieved by LSTM
Networks.
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LSTM Networks:

■ Special kind of RNN explicitly designed to be capable of learning long-term
dependencies.

■ Introduced by Hochreiter and Schmidhuber in 1997.

■ In practice, all the successfull applications of RNNs were achieved by LSTM
Networks.

A vanilla RNN unrolled in time:

Christopher Olah: Understanding LSTMs
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LSTM Networks:

■ Special kind of RNN explicitly designed to be capable of learning long-term
dependencies.

■ Introduced by Hochreiter and Schmidhuber in 1997.

■ In practice, all the successfull applications of RNNs were achieved by LSTM
Networks.

An LSTM unrolled in time:

Christopher Olah: Understanding LSTMs
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LSTM state (memory): LSTM forget gate:

LSTM input gate: LSTM output gate:

Christopher Olah: Understanding LSTMs
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P. Pošı́k c© 2020 petr.posik@fel.cvut.cz Artificial Intelligence – 38 / 44

■ Automated creation of image descriptions in natural language.

■ A combination of

■ word embeddings,

■ ConvNets generating a high-level representation of the image, and

■ RNNs generating the textual description.

■ The model is trained to maximize the likelihood of the target description sentence
given the training image.

Vinyals et al., Show and Tell: A Neural Image Caption Generator. 2015
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Vinyals et al., Show and Tell: A Neural Image Caption Generator. 2015

petr.posik@fel.cvut.cz


Other remarks
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■ Caffe

■ Theanno

■ TensorFlow

■ Torch

■ Keras
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■ Yann LeCun, Yoshua Bengio, Geoffrey Hinton: Deep Learning. Nature, 2015.
doi:10.1038/nature14539

■ Michael A. Nielsen: Neural Networks and Deep Learning, Determination Press, 2015

■ Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning.

■ Christopher Olah: Deep Learning, NLP, and Representations

■ Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition

■ Adit Deshpande: Understanding CNNs (Part 1, Part 2, Part 3)

■ YN2: A Guide to Deep Learning

■ Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks

■ Christopher Olah: Understanding LSTM Networks

■ Denny Britz: Recurrent neural networks tutorial
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P. Pošı́k c© 2020 petr.posik@fel.cvut.cz Artificial Intelligence – 44 / 44

After this lecture, a student shall be able to . . .

1. define what a deep learning is and how it is related to representation learning;

2. describe word embeddings (word2vec) and exemplify its features;

3. explain why deep networks are hard to train, especially the vanishing gradient effect;

4. describe the factors that facilitated the practical use of deep learning in the last decade;

5. explain what an autoencoder is and how it is related to pre-training of deep nets;

6. explain the principle of convolutional layers, the importance of weight sharing and pooling, and
describe their main differences from fully connected layers;

7. give examples of applications of convolutional networks to image processing;

8. describe the difference of recurrent neural networks from feedforward networks;

9. describe the unrolling of RNN in time and give an example;

10. explain the difference between short- and long-term dependencies when processing sequences;

11. describe LSTM and its main differences from a regular RNN unit;

12. explain what the backpropagation in time is and what it is used for;

13. give examples of applications of recurrent neural networks to language processing.
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