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Quiz

Based on your current knowledge and intuition, which of the following options is the best
characterization of deep learning (DL) and its relation to machine learning (ML)?

DL is any ML process that requires a deep involvement of a human designer in ex-
tracting the right features from the raw data.

B DL is any solution to a ML problem that uses neural networks with a few, but very
large hidden layers.

DL is a set of ML methods allowing us not only to solve the problem at hand, but also
gain deep understanding of the solution process.

DL is any method that tries to automatically transform the raw data into a represen-
tation suitable for the solution of our problem, often at multiple level of abstraction.
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What is Deep learning?

Conventional ML techniques:

m Limited in their ability to process natural data in their raw form.

m  Successful applications required careful engineering and human expertise to extract
suitable features.

Representation learning;:

m  Set of methods allowing a machine to be fed with raw data and to automatically
discover the representations suitable for correct classification/regression/modeling.

Deep learning;:
m  Representation-learning methods with multiple levels of representation, with
increasing level of abstraction.

= Compose simple, but often non-linear modules transforming the representation at
one level into a representation at a higher, more abstract level.

m  The layers learn to represent the inputs in a way that makes it easy to predict the
target outputs.
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m  1940s: Model of neuron (McCulloch, Pitts)

m  1950-60s: Modeling brain using neural networks (Rosenblatt, Hebb, etc.)
m  1969: Research stagnated after Minsky and Papert’s book Perceptrons

m  1970s: Backpropagation

m  1986: Backpropagation popularized by Rumelhardt, Hinton, Williams

m  1990s: Convolutional neural networks (LeCun)

m  1990s: Recurrent neural networks (Schmidhuber)

m  2006: Revival of deep networks, unsupervised pre-training (Hinton et al.)
m  2013-: Huge industrial interest
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= Narrow vs wide: Refers to the number of units in a layer.
m  Shallow vs deep: Refers to the number of layers.
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Making a deep architecture:

m A classifier uses the original representation:
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m A classifier uses features which are derived from the features derived from the
original representation:
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Terminology

Narrow vs wide: Refers to the number of units in a layer.
Shallow vs deep: Refers to the number of layers.

Making a deep architecture:

A classifier uses the original representation:
A classifier uses features which are derived from the original representation:

A classifier uses features which are derived from the features derived from the
original representation:

Input Hidden Hidden Output
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Example: Word embeddings

Sometimes, even shallow architectures can do surprisingly well!

Representation of text (words, sentences):

= Important for many real-world apps: search, ads recommendation, ranking, spam
filtering, ...

m  Local representations (a concept is represented by a single node):

N-grams, 1-of-N coding, Bag of words
Easy to construct.
Large and sparse.

No notion of similarity (synonyms, words with similar meaning).

m Distributed representations (a concept is represented by a pattern of activations
across many nodes):

Vectors of real numbers in a high-dimensional continuous space (but much less
dimensional than 1-of-N encoding).

Not clear how to meaningfully construct such a representation.
The size is tunable, but much smaller than that of local representations; dense.
Similarity well defined: synonyms should be in the same area of the space.

Assumption: meaning can be defined by the word context, i.e. words that surround it.
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Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013

m  Continuous bag of words (CBOW): Predict the current word based on the context
(preceding and following words).

m Skip-gram: Predict the context (surrounding words) given the current word.

m The transformation of local to distributed representation is shared among all words!

m  Trained using SGD with BP on huge data sets with billions of word n-grams, and

with millions of words in the vocabulary!
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Tomas Mikolov et al.: Distributed Representations of Words and Phrases and their Compositionality. 2013

m  Countries are found in one area, capitals in another.

m  The difference vectors of countries to capitals are almost the same!

m  The places roughly progress from Asia, through middle east, eastern Europe, to
western Europe!
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Successes m

Trained on a lot of data!

Recurrent Nets

m  Turns out that similar results can be obtained by SVD factorization of (the log of) the
matrix of counts of co-occurence of words and phrases.

Other remarks

Summary

m Statistical learning can be much better than people expect! Sometimes even with a
shallow architecture!

m Features derived by word2vec used across many big IT companies in plenty of apps
(adds, search, ...)
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Why deep?

Universal approximation theorem:

= A multilayer perceptron with a single hidden layer with a sufficient (but finite)
number of hidden units can approximate any continuous function with arbitrary
precision (under some mild assumptions on the activation functions).

= Why bother with deeper networks?

The theorem says nothing about

m the efficiency of such a representation (there are functions which — when represented
by a shallow architecture — require exponentially more units compared to deep
architecture), and

m the efficiency of learning such a wide and shallow network from data.

When solving an algorithmic problem, we usually

m start by solving sub-problems, and then
m gradually integrate the solutions.

We build the solution through multiple layers of abstraction.
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A new idea?

Deep architectures:

Not a new idea. Maybe 50 years old.
Hard /impossible to train until recently.

What makes deep networks hard to train?

= Not an easy answer, subject of ongoing research.

m Instabilities associated to gradient-based learning (vanishing/exploding gradients).

m  The choice of activation function.

= Weights initialization.

m  Details of implementation of gradient descent (momentum schedule).

m  The choice of network architecture and hyper-parameters.

Vanishing gradient

m Backpropagation is “just”a clever use of chain rule.

m  During error backpropagation, the multiplication by the derivative of the activation
function is used many times.

m The derivative of the “standard” sigmoidal function is from (0, 0.25).

m  The size of error deminishes when propagating towards the input layer, and quickly
becomes very small.

m  The learning in the initial layers of deep neural network is very slow; these layers
learn virtually nothing (unless trained for a very looooong time).

m  Exploding gradient is exactly the opposite problem.
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Boom of Deep Nets

Factors of the deep nets boom in the last decade:

Big data era. Building models with millions of parameters started to make sense.
Fast GPUs. Training such large models started to be feasible.

Weight sharing. Not that many parameters are actually needed.

Unsupervised pre-training. For areas where not enough data is available.

Data augmentation. Artificially created training examples by
deforming/moving/rotating the available ones.

Regularization. Especially using drop-out.
ReLU. Usually makes backpropagation faster.
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m  Unsupervised learning. (Or, rather “self-supervised”?)

m  Networks trained to map input vector on the same output vector.

m  Reconstruction error is minimized.

m  Performs dimensionality reduction.

m Hidden layer contains less neurons than input and output layers.

= Hidden neurons contain compressed representation of the input examples.

X1 X1
X2 » > X
X3 > > X3
X4 5C\4
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1. Train the first hidden layer of an autoencoder.

2. Split the first hidden layer to encoder and decoder, keep them fixed and train the

second hidden layer.

3. Split the second hidden layer to encoder and decoder, keep them fixed and train the

third hidden layer.

X1

X2 X2
X3 fé
X4 Xy
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3. Split the second hidden layer to encoder and decoder, keep them fixed and train the

third hidden layer.

X1
X2 \
X3
X4

X5

P. Posik (© 2020

petr.posik@fel.cvut.cz

Artificial Intelligence — 15 / 44


petr.posik@fel.cvut.cz

Deep Learning

Stacked autoencoders

e Quiz

e Definition

e History

e Terminology

e Ex: Word embed.
e Ex: w2v arch.

e Ex: w2v results

e Why deep?

e A new idea?

e Boom of Deep Nets
e Autoencoders

e Stacked autoenc.

e Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Summary

P. Posik (© 2020

1. Train the first hidden layer of an autoencoder.

2. Split the first hidden layer to encoder and decoder, keep them fixed and train the
second hidden layer.

3. Split the second hidden layer to encoder and decoder, keep them fixed and train the
third hidden layer.

X1

X3 \

X3 X3

X4

\
x5/ \A

= Always training only a single layer - building a deep architecture one step at a time.
m  Vanishing gradients are not an issue.

petr.posik@fel.cvut.cz

Artificial Intelligence — 15 / 44


petr.posik@fel.cvut.cz

Deep Learning

Deep NN pre-training

e Quiz

e Definition

e History

e Terminology

e Ex: Word embed.
e Ex: w2v arch.

e Ex: w2v results

e Why deep?

e A new idea?

e Boom of Deep Nets
e Autoencoders

e Stacked autoenc.

e Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Summary

m  Use stacked autoencoders to pre-train the first layers of the network.
m  Use the encoding part of the network, and attach a classifier for your particular task.

m Train the attached part of the network (and fine tune the encoder weights) by
backpropagation.

X1

\
Xy \

X3 —»
X4

X5
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Deep NN pre-training

m  Use stacked autoencoders to pre-train the first layers of the network.
m  Use the encoding part of the network, and attach a classifier for your particular task.

m Train the attached part of the network (and fine tune the encoder weights) by
backpropagation.

X1

\s
Xy \

X3 —»

X4

/

X5

An example of Transfer learning;:

m  Using certain part of a model trained for one task as the basis of a model performing
another, but related task.
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Quiz

Image processing by NN:

= Imagine you would like to classify 28 x 28 gray scale images.
Deep Learning

= You would like to use an MLP with a single hidden layer of the same size and fully

COZVN“S connected to the input layer.
e ulz
o Fully connected =  What is the number of connections (weights that must be trained) between input and
e Local reception hidden layers?
e Weight sharing
e Convolutional layer
o Filters
« Pooling l 28 x 28 =784

e Complete ConvNet

Successes 282 X 282 - 614656

Recurrent Nets

l 282 x (282 +1) = 615440

Other remarks

S . (287 +1) x (28 +1) = 616225
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Summary

Image processing by NN

Fully-connected architecture:

Input layer neurons are directly connected to the image pixels.

Let’s have a hidden layer with approx. the same size as the input layer fully connected

to the input layer:

m  Small image size: 28 x 28 pixels (= number of input neurons).
= Hidden layer with the same number of neurons (282).

= Number of weights ~ 600 thousands.

m Repeat several times, if you want a deep architecture.

Too many parameters to learn!

Ignores spatial structure of the images:

m Treats the input pixels far/close to each other in exactly the same way:

m Sensitive to movements of the object in the image.

P. Posik (© 2020

petr.posik@fel.cvut.cz

Artificial Intelligence — 19 / 44


petr.posik@fel.cvut.cz

Deep Learning

ConvNets

e Quiz

e Fully connected

e Local reception

e Weight sharing

e Convolutional layer
e Filters

e Pooling

e Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary

Image processing by NN

Fully-connected architecture:

m Input layer neurons are directly connected to the image pixels.

m Let’s have a hidden layer with approx. the same size as the input layer fully connected
to the input layer:

m  Small image size: 28 x 28 pixels (= number of input neurons).
= Hidden layer with the same number of neurons (282).

= Number of weights ~ 600 thousands.

m Repeat several times, if you want a deep architecture.

m  Too many parameters to learn!

m Ignores spatial structure of the images:

m Treats the input pixels far/close to each other in exactly the same way:

m Sensitive to movements of the object in the image.

Convolutional networks solve these issues by
m local receptive fields,
m shared weights, and
m  pooling.

P. Posik (© 2020
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Deep Learning

Local receptive fields

ConvNets

e Quiz

e Fully connected

e Local reception

e Weight sharing

e Convolutional layer
o Filters

e Pooling

e Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary
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m  Each hidden unit is connected to only a few inputs localized in a small window.
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m This window is the local receptive field.

s The window then “slides” across the entire image.

m Each of its positions corresponds to a hidden neuron.

m  Stride length: The number of pixels by which the window moves in each step.

= Number of weights:
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Deep Learning

Local receptive fields

ConvNets

e Quiz

e Fully connected

e Local reception

e Weight sharing

e Convolutional layer
o Filters

e Pooling

e Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary
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m  Each hidden unit is connected to only a few inputs localized in a small window.
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m This window is the local receptive field.

s The window then “slides” across the entire image.

m Each of its positions corresponds to a hidden neuron.

m  Stride length: The number of pixels by which the window moves in each step.

= Number of weights: 24> ( 52 4+ 1 )
N N =~

Outputs Inputs  Biases
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Local receptive fields

m  Each hidden unit is connected to only a few inputs localized in a small window.

input negrons
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Recurrent Nets

m This window is the local receptive field.

Other remarks

Summary s The window then “slides” across the entire image.

m Each of its positions corresponds to a hidden neuron.
m  Stride length: The number of pixels by which the window moves in each step.

= Number of weights: 24> ( 5> 4 1 )~ 15 thousands
M~ =~
Outputs Inputs  Biases

m  Multiple input channels: e.g., in case of color image, we have 3 intensity images (for
colors R, G, B).
Number of weights:
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Local receptive fields

m  Each hidden unit is connected to only a few inputs localized in a small window.

input negrons
BBORLOLL 00000000 0020002000

firat hidden layer

s Lawpainlasaiaiala Salapnpa Salaynla Lals te
Lrlatelatalatelalolaswlatoln eletulatnlale)

Deep Learning

...... SOCOCORO

ConvNets GHG000BOBAGDO0GRB0D00
: GO0 an0n 00000000

e Quiz 0680880688888 080658
QOONRLCOO0I00C0e0o00

300000000000000000030

e Fully connected

SOOOO0G000 [alalslalelatelalelalalalnlatnl sl alnlatolale) s
OOODOOODOOODOOODDOOOOOOO
QOO0 000D 0G0 G0 GO 0000

ODOGOOUOOOOOOOOOODDDOODO

OLocalumephon SOODoO30C0C00d0 0000500

oVWﬂghtshaﬂng [aRelalage Jale talasatatulatala tnle ine ol

L
o
o)
o
4]
o
5]
3
OOOOOOOOOOOOOOOOOOOOODOGE
G
0
4]
&
5]
o
5]

DGOGOQDGDQOOOOOGOG‘

DDDOGOGOGDDOGGOGGD-I

O
GOgQ
G06000600000406060600000 S0000400060A0E0A00000604
. OO0 0ROI0T0R0RUR0R] CoCOQRORCOCogoUaCoooagoy
e Convolutional layer 4o0a080004060000000000050 0o0004060004000008000004
OO0 CRONOR0R0R0R0C000 CoUoUIUoOI0UaIgRUsoruogy
. SOGOG0000000000000000080 S&000a0a0006000G04060a0G
o Filters QOO OR0T0I0R0T0R0I000 COUOCOCOCo0o0o0oUoUo0eay
2000000000000 000000G000 Co03000G00000G00000G000d
e Pooling QOO 0IOR0I0T000c0R0T000000] COOogo0oOo0cOogoogooCoag
jalslalnlatalatalatnlitolitalalnlalnlalalslalaln]alntale] [alalalulalatulatelalalalaletolalnlalnlatolate)s)
DODOQIOIOR0R0R0T0C0T0R0T0RT QOCRORUOCCoo0o0oURaoungs
[ ] COmplete COnVNet latalalelalalalnlalnlatalainlalwlalulaloletulaln]slnlaln} [slalelalalatelalnlalelatalatalalal slelatul st al4]

Successes

Recurrent Nets

Other remarks

Summary

P. Posik (© 2020

ol latalaletalotolasale lalsinlayulaialotolelolotobele)
fagslalnlaielainlatslainlalolainlainlainlalnlainlalinlalsl

Michael A. Nielsen, “Neural Networks and Deep Learning”, Determination Press, 2015

m This window is the local receptive field.

s The window then “slides” across the entire image.

m Each of its positions corresponds to a hidden neuron.

m  Stride length: The number of pixels by which the window moves in each step.

= Number of weights: 24> ( 52 4+ 1 )
e
Outputs Inputs  Biases

~ 15 thousands

m  Multiple input channels: e.g., in case of color image, we have 3 intensity images (for

colors R, G, B).

Number of weights: 24> (3-52+ 1 )
N~ =~

Outputs Inputs  Biases

~ 45 thousands
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Weight sharing

m  Each hidden neuron has bias and 5 x 5 weights.
m All hidden neurons use the same weights and bias, they define a filter!

Deep Learning m  The output of the hidden neuron at (7, ¢) is
ConvNets

e Quiz

4 4
o Fully Conne(?ted Zre = § b+ Z Z wj,er+j,c+k ,
e Local reception i=0k=0

e Weight sharing

e Convolutional layer . . . . . . .

o Filters where w; i are the shared weights, b is the shared bias, and g is the activation function

e Pooling (Singid, ReLU, “e )

e Complete ConvNet . . .
: m  The sum is closely related to the operation of convolution, hence the name.

Successes

Recurrent Nets

Other remarks

Summary
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Weight sharing

m  Each hidden neuron has bias and 5 x 5 weights.
m All hidden neurons use the same weights and bias, they define a filter!

Deep Learning m  The output of the hidden neuron at (7, c) is
ConvNets

e Quiz

4 4
o Fully Conne(?ted Zre = § b+ Z Z wj,er+j,c+k ,
e Local reception i=0k=0

e Weight sharing

e Convolutional layer . . . . . . .
 Filters where w; i are the shared weights, b is the shared bias, and g is the activation function
e Pooling (Singid, ReLU, “e )

e Complete ConvNet . . .
: m  The sum is closely related to the operation of convolution, hence the name.

Successes

m In case of multiple input channels:

Recurrent Nets

Other remarks 4

2 4
Summary Zre = & b+ Z 2 Z wi,j,kxi,r+j,C+k
i=0;7=0k=0

= Number of parameters:
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Weight sharing

m  Each hidden neuron has bias and 5 x 5 weights.
m All hidden neurons use the same weights and bias, they define a filter!

Deep Learning m  The output of the hidden neuron at (7, c) is
ConvNets

e Quiz

4 4
e Fully Conne(?ted ZT,C — g b + Z Z wj,er+j,c+k ,
e Local reception j=0k=0

e Weight sharing

e Convolutional layer . . . . . . .
 Filters where w; i are the shared weights, b is the shared bias, and g is the activation function
e Pooling (Singid, ReLU, “e )

e Complete ConvNet . . .
: m  The sum is closely related to the operation of convolution, hence the name.

Successes

m In case of multiple input channels:

Recurrent Nets

Other remarks

2 4 4
Summary Zre = & b+ Z Z Z wi,j,kxi,r+j,C+k
i=0;7=0k=0

= Number of parameters: (3-5°+_ 1 ) =76

Inputs  Bias

= All the neurons in the hidden layer detect exactly the same feature, just at different
locations in the input image.
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Deep Learning

ConvNets

e Quiz

e Fully connected

e Local reception

e Weight sharing

e Convolutional layer
o Filters

e Pooling

e Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary

Convolutional layer

We know how to

m turn the input image represented as a volume (3 channels x width x height) into

m asingle feature map (how much is a feature expressed on all places of the image)

m using a single filter.

P. Posik (© 2020
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Convolutional layer

We know how to

m turn the input image represented as a volume (3 channels x width x height) into
Deep Learning

m asingle feature map (how much is a feature expressed on all places of the image)
ConvNets

e Quiz

® using a single filter.

e Fully connected
e Local reception

« Weight sharing Convolutional layer:

e Convolutional layer

 Filtore m For a reliable image recognition we need more than one feature maps using many
« Pooling different filters (tens, hundreds, ...).

lete i
e Complete ConvNet - ”It processes Volume into Volume”.

Successes
Recurrent Nets 28 w 28 input neurons firat hidden layer: 3 x 24 x 24 neuarons
Other remarks o]
Summary
'_.__'_,__.,,_..—-—--—"_:'
e

Michael A. Nielsen, “"Neural Networks and Deep Learning”, Determination Press, 2015
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Deep Learning

ConvNets

e Quiz

e Fully connected

e Local reception

e Weight sharing

e Convolutional layer
o Filters

e Pooling

e Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary

Filters

An example of 20 filters for the MNIST number database (see also Wikipedia):

Michael A. Nielsen, "Neural Networks and Deep Learning”, Determination Press, 2015

These filters were

m not hand-crafted,

m  but automatically trained!

P. Posik (© 2020
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Pooling

Pooling layers:

m  Usually used immediately after convolutional layers.
Deep Learning

m  They simplify the information in the output of the convolutional layer by creating a

Convivets condensed feature map.
e Quiz
e Fully connected u Max-pooling:
e Local reception L. . . . .
« Weight sharing m  Each unit in pooling layer summarizes a region of, say, 2 x 2 neurons in the
e Convolutional layer previous layer by taking the maximum of the entries.
o Filters

m [t reduces the size of the feature map by a factor of 2 x 2 = 4.

e Pooling

o Complete ConvNet hiddet newrons (cutput feom feature maps)

Single depth slice

Successes EelaZalotolaloluolelatolatolotualatalotolezalotole} tax-pooling uits
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Michael A. Nielsen, "Neural Networks and Deep
Learning”, Determination Press, 2015

m  Pooling is usually applied to each of the channels separately.
= Other types of pooling exist: L2 pooling, average pooling, ...
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Deep Learning

ConvNets

e Quiz

e Fully connected

e Local reception

e Weight sharing

e Convolutional layer
e Filters

e Pooling

e Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary

A complete ConvNet

An example of a complete ConvNet applied to MNIST classification:

m A classification of 28 x 28 grey-scale bitmap images into 10 classes (numbers 0 - 9).

convolutional fayer 100 sigmoid 35,0000,
28 % 28 0K 24X 24 . DEUOnE  oupat layer
i pooling lzyer & {saftenax)
‘ i3 C-. )
i~ : Ty £y
i : Lo L
- ] el e i
S N B
l— ] {7 :
.................. " f'\-‘
L

Michael A. Nielsen, “Neural Networks and Deep Learning”, Determination Press, 2015

m  The input 28 x 28 layer encodes pixel intensities for MNIST images.

m  The first hidden layer is convolutional with 5 x 5 receptive field and 20 filters
resulting in 20 x 24 x 24 hidden feature neurons.

m  The second hidden layer is max-pooling with 2 x 2 regions; the result is 20 x 12 x 12
hidden feature neurons.

m  These are fully connected to the final “classifier” with 2 layers of 100 and 10 output
neurons (because the MNIST dataset contains 10 classes).

= You can stack more convolutional and pooling layers one after another!
m The whole network is trained by GD with backpropagation.

P. Posik (© 2020
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Recent successes of Deep ConvNets
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Deep Learning

ImageNet Dataset

ConvNets

Successes

e ImageNet Dataset
e AlexNet results

e AlexNet

e AlexNet Successors

Recurrent Nets

Other remarks

Summary

=  High-resolution color images: 15M images, 22k classes

m ImageNet Large Scale Visual Recognition Challenge (ILSVRC) uses subset of
ImageNet: 1.3M training, 50k validation, 100k testing samples, 1000 classes

= Some images contain more than 1 object.

m  Top 5: an algorithm is considered correct if the actual ImageNet classification was

among the 5 classifications the algorithm considered most likely.

P. Posik (© 2020
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AlexNet results

AlexNet: Breakthrough of ConvNets in computer vision!

m  Top-5 error rate of AlexNet: 15.3 %, the second best entry: 26.2 %

Deep Learning

ConvNets

Successes

e ImageNet Dataset
e AlexNet results

e AlexNet

e AlexNet Successors

Recurrent Nets

mite container shi motor scooter
Other remarks mite container ship motor scooter ledpard
Summary black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat

|

mushroom cherry adagascar cat

onvertible agaric dalmatian sq | monkey

grille mushroom grape spider monkey

_] pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man’'s-fingers currant howler monkey

Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012
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AlexNet

Structure:

Deep Learning

ConvNets

58 04 >03g \dense

o]
N
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Successes

13 \ 13

e ImageNet Dataset

224 2 i -

e AlexNet results
e AlexNet
e AlexNet Successors
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192 192 128 Max
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pooling pooling
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Recurrent Nets

Other remarks

Summary
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AlexNet

Structure:

Deep Learning

ConvNets

2048 7oas \dense

Successes 5

e ImageNet Dataset EN
224 sl [T L ENG

e AlexNet results
o AlexNet
e AlexNet Successors

dense dense

1000

192 192 128 Max ||
pooling 2048 2048

Max 128 Max

Recurrent Nets pooling pooling

Other remarks

Summary

Both pictures from Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012
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AlexNet Successors

ILSVRC 2012: Alexnet’s Top-5 error rate 15.3 %

m  Two separate data flows for 2 GPUs, 60M parameters.
Deep Learning

m  ReLUs, dropout.

ConvNets

Successes

ILSVRC 2013: ZFNet’s Top-5 error rate 11.2 %

m  Larger number of smaller filters, deeper.

e ImageNet Dataset
e AlexNet results

e AlexNet

e AlexNet Successors

Recurrent Nets ILSVRC 2014: VGG Net’s Top 5 error rate 6.8 %

Other remarks

m 22 ]ayers of neurons

Summary

ILSVRC 2014: GoogLeNet’s Top 5 error rate 6.66 %

= More than 30 layers of neurons.

m Inception modules instead of convolutional (a module containing several
convolutional layers with small filters, and pooling).

= Only 5M parameters (compared to 60M of AlexNet)
=  Human error rate (not easily obtainable) is 5.1 %

ILSVRC 2015: ResNet’s Top 5 error 3.6 %

m 152 layers (2-3 weeks on 8 GPUs)
m  Skip connections: each layer is trained to residuals of the previous layer.
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Recurrent NNs

Memory:

m  Feedforward NNs (including ConvNets) do not have a memory:
Deep Learning

m Fixed-sized vector as input (e.g. an image), fixed-sized vector as output (e.g.

ConvNets probabilities of different classes).

Successes

m  Fixed amount of computational steps (e.g. the number of layers in the model).

Recurrent Nets

e Recurrent NNs

m Inreal world, reasoning is a lot about memory, context, thought persistance.
e RNN Applications

* BP in time m  Even if your inputs/outputs are fixed vectors, it is still possible to process them in a
* Dependencies sequential manner.
o LSTM

o LSTM gates

« Image captioning Recurrent Neural Networks (RNNs): ()
* Captioning results m  Allow us to operate over sequernces of vectors. T
R m  Feedback loops in network implement the concept of memory. L> A —]

Summar
: m A part of network A transforms the current input x; and the
previous network state into the network output.

RNN unrolled in time: multiple copies of the same network, each passing a message to a

® ® ® ®
o S W i SER
5 4

S Sl

Both pictures from Christopher Olah: Understanding LSTMs
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Deep Learning

RNN Applications

ConvNets

Successes

Recurrent Nets

e Recurrent NNs

e RNN Applications
e BP in time

e Dependencies

e LSTM

o LSTM gates

e Image captioning

e Captioning results

Other remarks

Summary

one to one one to many many to one many to many many to many
i i R R (05 11988 N

= = |- =1 -] -] i L -1 -1
i 1 t tt B 0

Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks

1. Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized
output (e.g. image classification).

2. Sequence output (e.g. image captioning takes an image and outputs a sentence of
words).

3. Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment).

4. Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French).

5. Synced sequence input and output (e.g. video classification where we wish to label
each frame of the video).

...speech recognition, language modeling, machine translation, attention modeling, ...

P. Posik (© 2020
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Backpropagation through time

Backprop through time (BPTT):
= A method to compute the gradients for weights of RINNSs.

Deep Learning

m  Unroll the network several steps in time:
ConvNets

® ®
1

Recurrent Nets

e Recurrent NNs
e RNN Applications [ > A A —p A —p
e BP in time

A
e Dependencies
e LSTM
o LSTM gates @ e
Ms

e Image captioning Christopher Olah: Understanding LST

®
:

e Captioning results

Other remarks

m This can be viewed as a “normal” feedforward network with the same weights in all
Summary the layers.

m  BPTT is equivalent to normal BP on unfolded networks, with the exception that t/e
gradients for a particular weight are sumed over the layers.
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Deep Learning

ConvNets

Successes

Recurrent Nets

e Recurrent NNs

e RNN Applications
e BP in time

e Dependencies

e LSTM

o LSTM gates

e Image captioning

e Captioning results

Other remarks

Summary

Short- and long-term dependencies

Dependencies: RNNs connect previous information to the present task, e.g.

m previous video frames help us understand the present frame,

m alanguage model predicts the next word based on previous ones, ...

Short-term dependencies: easy for vanilla RNNs.

m Predict the last word in the sequence “the clouds are in the [sky]”.

m  The gap between relevant information and the place it is needed is small.

Long-term dependencies: hard for vanilla RNNSs, special units required.

m Predict the last word in the sequence “I was born in France. Blah blah blah ...blah. I
speak fluently [French].”

m  In theory, vanilla RNNs are absolutely capable of handling such long-term
dependencies.

m In practice, RNNs don’t seem to be able to learn them.

>

Christopher Olah: Understanding LSTMs
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Long Short-Term Memory

LSTM Networks:
m  Special kind of RNN explicitly designed to be capable of learning long-term
Deep Learning dependenCieS.
ConvNets ® Introduced by Hochreiter and Schmidhuber in 1997.

Successes

m In practice, all the successfull applications of RNNs were achieved by LSTM
Recurrent Nets Networks.

e Recurrent NNs

e RNN Applications
e BP in time

e Dependencies

e LSTM

o LSTM gates

e Image captioning

e Captioning results

Other remarks

Summary
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Deep Learning

ConvNets

Successes

Recurrent Nets

e Recurrent NNs

e RNN Applications
e BP in time

e Dependencies

e LSTM

o LSTM gates

e Image captioning

e Captioning results

Other remarks

Summary

Long Short-Term Memory

LSTM Networks:

m  Special kind of RNN explicitly designed to be capable of learning long-term
dependencies.

m Introduced by Hochreiter and Schmidhuber in 1997.

m In practice, all the successfull applications of RNNs were achieved by LSTM
Networks.

A vanilla RNN unrolled in time:

6 D, ®
t t

A
~ N N ™
— . —
A e A
\_ J J \_ )

Christopher Olah: Understanding LSTMs
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Deep Learning

ConvNets

Successes

Recurrent Nets

e Recurrent NNs

e RNN Applications
e BP in time

e Dependencies

e LSTM

o LSTM gates

e Image captioning

e Captioning results

Other remarks

Summary

Long Short-Term Memory

LSTM Networks:

m  Special kind of RNN explicitly designed to be capable of learning long-term
dependencies.

m Introduced by Hochreiter and Schmidhuber in 1997.
m In practice, all the successfull applications of RNNs were achieved by LSTM

Networks.
An LSTM unrolled in time:
® ® &
e T\ e N T\
=P — @ gy > —
A Lot o A
R s > N

& ) &)

Christopher Olah: Understanding LSTMs
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LSTM gates

LSTM state (memory):

1o

LSTM input gate:
it
Ct
hi—1

LSTM forget gate:
Je
hi—1
Tt
LSTM output gate:
hy
Ganh>
Oy e
ht—l m ht

I

Christopher Olah: Understanding LSTMs
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Image captioning

= Automated creation of image descriptions in natural language.

= A combination of
Deep Learning

= word embeddings,
ConvNets

m  ConvNets generating a high-level representation of the image, and

Successes

= RNNs generating the textual description.

Recurrent Nets

e Recurrent NNs

R m  The model is trained to maximize the likelihood of the target description sentence
e RNN Applications . L .
e BP in time given the training 1mage.
e Dependencies
e LSTM
o LSTM gates
e Image captioning

e Captioning results T Language A grOU-p Of peop[e
Deep CNN Generating shopping at an

RNN outdoor market.

Other remarks

Summary

= @ There are many
vegetables at the
fruit stand.

Vinyals et al., Show and Tell: A Neural Image Caption Generator. 2015
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Image captioning results

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
motorcycle on a dirt road. frisbee

A group of young people Two hockey players are A little girl in a pink hat is A refrigerator filled with lots of
playing a game of frisbee fighting over the puck., blowing bubbles. food and drinks.
- o i : Bl ioa 4

I er ot h;f&%:,_ BB e o

¥ dne

A herd of elephants walking A close up of a cat laying
across a dry grass field. on a couch.

A red motorcycle parked on the A yellow school bus parked
ide of the road.™~ Te=====in a parking lot.

:—"--‘-—:*

Somewhat related to the image

Vinyals et al., Show and Tell: A Neural Image Caption Generator. 2015
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Other remarks
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Software

m Caffe

m Theanno
Deep Learning m  TensorFlow
ConvNets m Torch
Successes m Keras

Recurrent Nets

Other remarks
e Software

e Resources

Summary
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Resources

= Yann LeCun, Yoshua Bengio, Geoffrey Hinton: Deep Learning. Nature, 2015.
doi:10.1038 /nature14539

Deep Learning m  Michael A. Nielsen: Neural Networks and Deep Learning, Determination Press, 2015
ConvNets = Jan Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning.
Successes m  Christopher Olah: Deep Learning, NLP, and Representations

Recurrent Nets

m  Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition
m  Adit Deshpande: Understanding CNNs (Part 1, Part 2, Part 3)

Other remarks

e Software
* Resources = YNZ?: A Guide to Deep Learning
Summary m  Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks

m  Christopher Olah: Understanding LSTM Networks

m  Denny Britz: Recurrent neural networks tutorial
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https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
http://yerevann.com/a-guide-to-deep-learning/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Summary
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Competencies

After this lecture, a student shall be able to ...

1. define what a deep learning is and how it is related to representation learning;
describe word embeddings (word2vec) and exemplify its features;

explain why deep networks are hard to train, especially the vanishing gradient effect;
describe the factors that facilitated the practical use of deep learning in the last decade;

explain what an autoencoder is and how it is related to pre-training of deep nets;

AL T o

explain the principle of convolutional layers, the importance of weight sharing and pooling, and
describe their main differences from fully connected layers;

N

give examples of applications of convolutional networks to image processing;
8. describe the difference of recurrent neural networks from feedforward networks;
9. describe the unrolling of RNN in time and give an example;
10. explain the difference between short- and long-term dependencies when processing sequences;
11.  describe LSTM and its main differences from a regular RNN unit;
12.  explain what the backpropagation in time is and what it is used for;

13. give examples of applications of recurrent neural networks to language processing.
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