

CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering Department of Cybernetics

Deep Learning.

Petr Pošík petr.posik@fel.cvut.cz

Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics

Deep Learning

Quiz

Based on your current knowledge and intuition, which of the following options is the best characterization of deep learning (DL) and its relation to machine learning (ML)?

Deep Learning

- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

- Successes
- Recurrent Nets

Other remarks

- A DL is any ML process that requires a deep involvement of a human designer in extracting the right features from the raw data.
- B DL is any solution to a ML problem that uses neural networks with a few, but very large hidden layers.
 - DL is a set of ML methods allowing us not only to solve the problem at hand, but also gain deep understanding of the solution process.
 - DL is any method that tries to automatically transform the raw data into a representation suitable for the solution of our problem, often at multiple level of abstraction.

What is Deep learning?

Conventional ML techniques:

- Limited in their ability to process natural data in their raw form.
- Successful applications required careful engineering and human expertise to extract suitable features.

Representation learning:

Set of methods allowing a machine to be fed with raw data and to *automatically discover the representations* suitable for correct classification/regression/modeling.

Deep learning:

- Representation-learning methods with multiple levels of representation, with *increasing level of abstraction*.
 - Compose simple, but often non-linear modules transforming the representation at one level into a representation at a higher, more abstract level.
 - The layers learn to represent the inputs in a way that makes it easy to predict the target outputs.

Deep Learning • Ouiz

- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

A brief history of Neural Networks

- **1940s:** Model of neuron (McCulloch, Pitts)
- 1950-60s: Modeling brain using neural networks (Rosenblatt, Hebb, etc.)
- **1969:** Research stagnated after Minsky and Papert's book *Perceptrons*
 - **1970s:** Backpropagation
- **1986:** Backpropagation popularized by Rumelhardt, Hinton, Williams
- **1990s:** Convolutional neural networks (LeCun)
- **1990s:** Recurrent neural networks (Schmidhuber)
- **2006:** Revival of deep networks, unsupervised pre-training (Hinton et al.)
 - **2013-:** Huge industrial interest

- Deep Learning
 Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

- Successes
- Recurrent Nets

Other remarks

- **Narrow** vs **wide**: Refers to the *number of units in a layer*.
- **Shallow** vs **deep**: Refers to the *number of layers*.

Deep Learning

- Quiz
- Definition
- History

• Terminology

- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

- **Narrow** vs **wide**: Refers to the *number of units in a layer*.
- **Shallow** vs **deep**: Refers to the *number of layers*.
- Deep Learning
- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training
- ConvNets
- Successes
- Recurrent Nets
- Other remarks
- Summary

- Making a deep architecture:
- A classifier uses the original representation:

- A classifier uses features which are derived from the original representation:
- A classifier uses features which are derived from the features derived from the original representation:

- **Narrow** vs **wide**: Refers to the *number of units in a layer*.
- **Shallow** vs **deep**: Refers to the *number of layers*.
- Deep Learning
- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Summary

- A classifier uses the original representation:
- A classifier uses features which are derived from the original representation:

A classifier uses features which are derived from the features derived from the original representation:

- **Narrow** vs **wide**: Refers to the *number of units in a layer*.
- **Shallow** vs **deep**: Refers to the *number of layers*.
- Deep Learning
- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

- A classifier uses the original representation:
- A classifier uses features which are derived from the original representation:
- A classifier uses features which are derived from the features derived from the original representation:

Example: Word embeddings

Sometimes, even shallow architectures can do surprisingly well!

Representation of text (words, sentences):

- Important for many real-world apps: search, ads recommendation, ranking, spam filtering, ...
- Local representations (a concept is represented by a single node):
 - N-grams, 1-of-N coding, Bag of words
 - Easy to construct.
 - Large and sparse.
 - No notion of similarity (synonyms, words with similar *meaning*).
 - Distributed representations (a concept is represented by a pattern of activations across many nodes):
 - Vectors of real numbers in a high-dimensional continuous space (but much less dimensional than 1-of-N encoding).
 - Not clear how to meaningfully construct such a representation.
 - The size is tunable, but much smaller than that of local representations; dense.
 - Similarity well defined: synonyms should be in the same area of the space.

Assumption: *meaning* can be defined by the word context, i.e. words that surround it.

Deep Learning

- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Example: word2vec Architectures

- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

```
ConvNets
```

```
Successes
```

```
Recurrent Nets
```

Other remarks

Summary

Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013

- **Continuous bag of words (CBOW):** Predict the current word based on the context (preceding and following words).
- **Skip-gram:** Predict the context (surrounding words) given the current word.
- The transformation of local to distributed representation is *shared among all words*!
- Trained using SGD with BP on huge data sets with billions of word n-grams, and with millions of words in the vocabulary!

Example: Results of word2vec

Tomas Mikolov et al.: Distributed Representations of Words and Phrases and their Compositionality. 2013

- Countries are found in one area, capitals in another.
- The difference vectors of countries to capitals are almost the same!
- The places roughly progress from Asia, through middle east, eastern Europe, to western Europe!

Example: Results of word2vec

	т		
Jeep	Lea	rning	

- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Summary

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013

Example: Results of word2vec

-	T		
Jeep	Lea	rning	

- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Summary

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013

ConvNets

Successes

Summary

• Pre-training

Recurrent Nets

Other remarks

Example: Results of word2vec

	Relationship	Example 1	Example 2	Example 3
	France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
Deep Learning	big - bigger	small: larger	cold: colder	quick: quicker
Definition	Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
• History	Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
 Terminology Ex: Word ambod 	Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
• Ex: w2v arch.	copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
• Ex: w2v results	Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
• Why deep?	Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Boom of Deep Nets	Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Autoencoders	Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza
 Stacked autoenc 				

Tomas Mikolov et al.: Efficient Estimation of Word Representations in Vector Space. 2013

Trained on a lot of data!

- Turns out that similar results can be obtained by SVD factorization of (the log of) the matrix of counts of co-occurence of words and phrases.
- Statistical learning can be much better than people expect! Sometimes even with a shallow architecture!
- Features derived by word2vec used across many big IT companies in plenty of apps (adds, search, ...)

Why deep?

Universal approximation theorem:

- A multilayer perceptron with a single hidden layer with a sufficient (but finite) number of hidden units can approximate any continuous function with arbitrary precision (under some mild assumptions on the activation functions).
- Why bother with deeper networks?
- Terminology

Deep Learning

Ouiz

Definition

History

- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

- Successes
- Recurrent Nets
- Other remarks
- Summary

The theorem says nothing about

- the efficiency of such a representation (there are functions which when represented by a shallow architecture – require exponentially more units compared to deep architecture), and
- the efficiency of learning such a wide and shallow network from data.

When solving an algorithmic problem, we usually

- start by solving sub-problems, and then
- gradually integrate the solutions.
- We build the solution through multiple layers of abstraction.

A new idea?

Deep architectures:

- Not a new idea. Maybe 50 years old.
- Hard/impossible to train until recently.

What makes deep networks hard to train?

- Not an easy answer, subject of ongoing research.
- Instabilities associated to gradient-based learning (vanishing/exploding gradients).
- The choice of activation function.
- Weights initialization.
- Details of implementation of gradient descent (momentum schedule).
- The choice of network architecture and hyper-parameters.

Vanishing gradient

- Backpropagation is "just" a clever use of chain rule.
- During error backpropagation, the multiplication by the derivative of the activation function is used many times.
- The derivative of the "standard" sigmoidal function is from (0, 0.25).
- The size of error deminishes when propagating towards the input layer, and quickly becomes very small.
- The learning in the initial layers of deep neural network is very slow; these layers learn virtually nothing (unless trained for a very loooong time).
- **Exploding gradient** is exactly the opposite problem.

Deep Learning

- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets
Other remarks

Boom of Deep Nets

Factors of the deep nets boom in the last decade:

- **Big data era.** Building models with millions of parameters started to make sense.
- **Fast GPUs.** Training such large models started to be feasible.
- Weight sharing. Not that many parameters are actually needed.
- **Unsupervised pre-training.** For areas where not enough data is available.
- Data augmentation. Artificially created training examples by deforming/moving/rotating the available ones.
- **Regularization.** Especially using drop-out.
 - **ReLU.** Usually makes backpropagation faster.

- Deep Learning
- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Autoencoders

- Unsupervised learning. (Or, rather "self-supervised"?)
- Networks trained to map input vector on the same output vector.
- Reconstruction error is minimized.
- Performs dimensionality reduction.
- Hidden layer contains less neurons than input and output layers.
- Hidden neurons contain compressed representation of the input examples.

Deep Learning

- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

- 1. Train the first hidden layer of an autoencoder.
- 2. Split the first hidden layer to encoder and decoder, keep them fixed and train the second hidden layer.
- 3. Split the second hidden layer to encoder and decoder, keep them fixed and train the third hidden layer.

4. ...

Ex: Word embed.Ex: w2v arch.

Deep Learning

Quiz

• Definition

HistoryTerminology

- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

- 1. Train the first hidden layer of an autoencoder.
- 2. Split the first hidden layer to encoder and decoder, keep them fixed and train the second hidden layer.
- 3. Split the second hidden layer to encoder and decoder, keep them fixed and train the third hidden layer.

- 4. ...
- Ex: Word embed.
- Ex: w2v arch.

Deep Learning

Quiz

• Definition

HistoryTerminology

- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

- 1. Train the first hidden layer of an autoencoder.
- 2. Split the first hidden layer to encoder and decoder, keep them fixed and train the second hidden layer.
- 3. Split the second hidden layer to encoder and decoder, keep them fixed and train the third hidden layer.

Deep Learning

- Quiz
- Definition
- History
- Terminology

4.

. . .

- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

4. ...

- 1. Train the first hidden layer of an autoencoder.
- 2. Split the first hidden layer to encoder and decoder, keep them fixed and train the second hidden layer.
- 3. Split the second hidden layer to encoder and decoder, keep them fixed and train the third hidden layer.

Always training only a single layer - building a deep architecture one step at a time.

Vanishing gradients are not an issue.

- Deep Learning • Quiz • Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Deep NN pre-training

- Use stacked autoencoders to pre-train the first layers of the network.
- Use the encoding part of the network, and attach a classifier for your particular task.
- Train the attached part of the network (and fine tune the encoder weights) by backpropagation.

Deep Learning

- Quiz
- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Deep NN pre-training

- Use stacked autoencoders to pre-train the first layers of the network.
- Use the encoding part of the network, and attach a classifier for your particular task.
- Train the attached part of the network (and fine tune the encoder weights) by backpropagation.

An example of Transfer learning:

Using certain part of a model trained for one task as the basis of a model performing another, but related task.

Deep Learning • Quiz

- Definition
- History
- Terminology
- Ex: Word embed.
- Ex: w2v arch.
- Ex: w2v results
- Why deep?
- A new idea?
- Boom of Deep Nets
- Autoencoders
- Stacked autoenc.
- Pre-training

ConvNets

Successes

Recurrent Nets

Other remarks

Convolutional Networks

Quiz

В

D

Image processing by NN:

- Imagine you would like to classify 28 × 28 gray scale images.
- You would like to use an MLP with a single hidden layer of the same size and *fully connected* to the input layer.
- What is the number of connections (weights that must be trained) between input and hidden layers?
- Convolutional layer

Fully connectedLocal reception

• Weight sharing

Deep Learning

ConvNets

• Quiz

- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary

28 imes 28 = 784

 $28^2 \times 28^2 = 614656$

 $28^2 \times (28^2 + 1) = 615440$

 $(28^2 + 1) \times (28^2 + 1) = 616225$

Image processing by NN

Fully-connected architecture:

- Input layer neurons are directly connected to the image pixels.
- Let's have a hidden layer with approx. the same size as the input layer *fully connected* to the input layer:
 - Small image size: 28 × 28 pixels (= number of input neurons).
 - Hidden layer with the same number of neurons (28^2) .
 - **Number** of weights ≈ 600 thousands.
 - Repeat several times, if you want a deep architecture.

Too many parameters to learn!

- Ignores spatial structure of the images:
 - Treats the input pixels far/close to each other in exactly the same way:
 - Sensitive to movements of the object in the image.

Deep Learning ConvNets

- Quiz
- Fully connected
- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Image processing by NN

Fully-connected architecture:

- Input layer neurons are directly connected to the image pixels.
- Let's have a hidden layer with approx. the same size as the input layer *fully connected* to the input layer:
 - Small image size: 28 × 28 pixels (= number of input neurons).
 - Hidden layer with the same number of neurons (28^2) .
 - Number of weights ≈ 600 thousands.
 - Repeat several times, if you want a deep architecture.

Too many parameters to learn!

- Ignores spatial structure of the images:
 - Treats the input pixels far/close to each other in exactly the same way:
 - Sensitive to movements of the object in the image.

Convolutional networks solve these issues by

- local receptive fields,
- shared weights, and
- pooling.

• Quiz

Deep Learning

ConvNets

- Fully connected
- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Each hidden unit is connected to only a few inputs localized in a small window.

first hidden layer

input neurons

Deep Learning ConvNets • Ouiz • Fully connected • Local reception • Weight sharing • Convolutional layer • Filters Pooling • Complete ConvNet Successes Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015 Recurrent Nets This window is the **local receptive field**. Other remarks The window then "slides" across the entire image. Summary Each of its positions corresponds to a hidden neuron. Stride length: The number of pixels by which the window moves in each step. Number of weights:

Each hidden unit is connected to only a few inputs localized in a small window.

Number of weights: $\underbrace{24^2}_{\text{Outputs Inputs}} (\underbrace{5^2}_{\text{Biases}} + \underbrace{1}_{\text{Biases}}) \approx 15 \text{ thousands}$

Each hidden unit is connected to only a few inputs localized in a small window.

input neurons first hidden layer Deep Learning 0000 ConvNets • Ouiz • Fully connected • Local reception • Weight sharing • Convolutional layer • Filters Pooling • Complete ConvNet Successes Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015 Recurrent Nets This window is the **local receptive field**. Other remarks The window then "slides" across the entire image. Summary Each of its positions corresponds to a hidden neuron. Stride length: The number of pixels by which the window moves in each step.

- Number of weights: $\underbrace{24^2}_{\text{Outputs Inputs}} (\underbrace{5^2}_{\text{Biases}} + \underbrace{1}_{\text{Biases}}) \approx 15 \text{ thousands}$
- Multiple input channels: e.g., in case of *color image*, we have 3 intensity images (for colors R, G, B).
 Number of weights:

Each hidden unit is connected to only a few inputs localized in a small window.

input neurons first hidden layer Deep Learning <u>ŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ</u> ConvNets • Ouiz • Fully connected Local reception • Weight sharing • Convolutional layer • Filters Pooling • Complete ConvNet Successes Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015 **Recurrent Nets** This window is the **local receptive field**. Other remarks The window then "slides" across the entire image. Summary Each of its positions corresponds to a hidden neuron. Stride length: The number of pixels by which the window moves in each step. Number of weights: $24^2 (5^2 + 1) \approx 15$ thousands Outputs Inputs Biases

Multiple input channels: e.g., in case of *color image*, we have 3 intensity images (for colors R, G, B).

Number of weights: 24^2 $(3 \cdot 5^2 + 1)$ ≈ 45 thousands Outputs Inputs Biases

Weight sharing

- Each hidden neuron has bias and 5×5 weights.
- All hidden neurons use *the same weights and bias*, they define a *filter*!
- The output of the hidden neuron at (r, c) is

$$z_{r,c} = g\left(b + \sum_{j=0}^{4} \sum_{k=0}^{4} w_{j,k} x_{r+j,c+k}\right),$$

where $w_{j,k}$ are the shared weights, *b* is the shared bias, and *g* is the activation function (sigmoid, ReLU, ...).

The sum is closely related to the operation of **convolution**, hence the name.

Deep Learning

ConvNets

- Quiz
- Fully connected
- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Weight sharing

- Each hidden neuron has bias and 5×5 weights.
- All hidden neurons use *the same weights and bias*, they define a *filter*!
- The output of the hidden neuron at (r, c) is

$$z_{r,c} = g\left(b + \sum_{j=0}^{4} \sum_{k=0}^{4} w_{j,k} x_{r+j,c+k}\right),$$

where $w_{j,k}$ are the shared weights, *b* is the shared bias, and *g* is the activation function (sigmoid, ReLU, ...).

The sum is closely related to the operation of **convolution**, hence the name.

In case of *multiple input channels*:

$$z_{r,c} = g\left(b + \sum_{i=0}^{2} \sum_{j=0}^{4} \sum_{k=0}^{4} w_{i,j,k} x_{i,r+j,c+k}\right).$$

Number of parameters:

ConvNets

Deep Learning

- Quiz
- Fully connected
- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Weight sharing

- Each hidden neuron has bias and 5×5 weights.
- All hidden neurons use *the same weights and bias*, they define a *filter*!
- The output of the hidden neuron at (r, c) is

$$z_{r,c} = g\left(b + \sum_{j=0}^{4} \sum_{k=0}^{4} w_{j,k} x_{r+j,c+k}\right),$$

where $w_{j,k}$ are the shared weights, *b* is the shared bias, and *g* is the activation function (sigmoid, ReLU, ...).

The sum is closely related to the operation of convolution, hence the name.

In case of *multiple input channels*:

$$z_{r,c} = g\left(b + \sum_{i=0}^{2} \sum_{j=0}^{4} \sum_{k=0}^{4} w_{i,j,k} x_{i,r+j,c+k}\right).$$

Number of parameters: $(\underbrace{3 \cdot 5^2}_{\text{Inputs}} + \underbrace{1}_{\text{Bias}}) = 76$

All the neurons in the hidden layer detect exactly *the same feature*, just *at different locations* in the input image.

Deep Learning

ConvNets

- Quiz
- Fully connected
- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Convolutional layer

We know how to

- turn the input image represented as a volume (3 channels × width × height) into
- a single feature map (how much is a feature expressed on all places of the image)
- using a single filter.

Deep Learning

ConvNets

- Quiz
- Fully connected
- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Convolutional layer

We know how to

- turn the input image represented as a volume (3 channels \times width \times height) into
- a single feature map (how much is a feature expressed on all places of the image)
 - using a single filter.

Convolutional layer:

- For a reliable image recognition we need more than one feature maps using *many different filters* (tens, hundreds, ...).
- "It processes volume into volume".

Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015

Local reception Weight sharing

• Fully connected

Deep Learning

ConvNets

• Quiz

- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

- Recurrent Nets
- Other remarks

Filters

An example of 20 filters for the MNIST number database (see also Wikipedia):

Deep Learning

ConvNets

- Quiz
- Fully connected
- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary

Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015

These filters were

- not hand-crafted,
- but automatically trained!

Pooling

Pooling layers:

- Usually used immediately after convolutional layers.
- They simplify the information in the output of the convolutional layer by creating a
 condensed feature map.
 - Max-pooling:
 - Each unit in pooling layer summarizes a region of, say, 2 × 2 neurons in the previous layer by taking the maximum of the entries.
 - It reduces the size of the feature map by a factor of $2 \times 2 = 4$.

hidden neurons (output from feature map)

000000000000000000000000000000000000000	max-pooling units
00000000000000000000000000000000000000	00000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	

Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015

- Pooling is usually applied to each of the channels separately.
- Other types of pooling exist: L2 pooling, average pooling, ...

Quiz Fully connected

Deep Learning

ConvNets

- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

A complete ConvNet

An example of a complete ConvNet applied to MNIST classification:

A classification of 28 × 28 grey-scale bitmap images into 10 classes (numbers 0 - 9).

Deep Learning

ConvNets

- Quiz
- Fully connected
- Local reception
- Weight sharing
- Convolutional layer
- Filters
- Pooling
- Complete ConvNet

Successes

Recurrent Nets

Other remarks

Summary

Michael A. Nielsen, "Neural Networks and Deep Learning", Determination Press, 2015

- The input 28×28 layer encodes pixel intensities for MNIST images.
- The first hidden layer is convolutional with 5×5 receptive field and 20 filters resulting in $20 \times 24 \times 24$ hidden feature neurons.
- The second hidden layer is max-pooling with 2 × 2 regions; the result is 20 × 12 × 12 hidden feature neurons.
- These are *fully connected* to the final "classifier" with 2 layers of 100 and 10 output neurons (because the MNIST dataset contains 10 classes).
- You can stack more convolutional and pooling layers one after another!
- The whole network is trained by *GD* with backpropagation.

Recent successes of Deep ConvNets

ImageNet Dataset

High-resolution color images: 15M images, 22k classes

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) uses subset of ImageNet: 1.3M training, 50k validation, 100k testing samples, 1000 classes

- Some images contain more than 1 object.
- **Top 5:** an algorithm is considered correct if the actual ImageNet classification was among the 5 classifications the algorithm considered most likely.

Deep Learning

ConvNets

Successes

- ImageNet Dataset
- AlexNet results
- AlexNet
- AlexNet Successors

Recurrent Nets

Other remarks

AlexNet results

AlexNet: Breakthrough of ConvNets in computer vision!

Top-5 error rate of AlexNet: 15.3 %, the second best entry: 26.2 %

Deep Learning

ConvNets

Successes

- ImageNet Dataset
- AlexNet results
- AlexNet
- AlexNet Successors

Recurrent Nets

Other remarks

Summary

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat

grille mushroom		cherry	Madagascar cat	
 convertible	agaric	dalmatian	squirrel monkey	
grille	mushroom	grape	spider monkey	
pickup	jelly fungus	elderberry	titi	
beach wagon	gill fungus	ffordshire bullterrier	indri	
fire engine	dead-man's-fingers	currant	howler monkey	

Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012

AlexNet

Structure:

Deep Learning

ConvNets

Successes

- ImageNet Dataset
- AlexNet results
- AlexNet
- AlexNet Successors

Recurrent Nets

Other remarks

AlexNet

Structure:

Deep Learning

ConvNets

Successes

- ImageNet Dataset
- AlexNet results
- AlexNet
- AlexNet Successors

Recurrent Nets

Other remarks

Summary

Filters learned at the first hidden layer:

Both pictures from Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012

Ø	3	J	IJ	
_//	R	X	A	\bigcirc
ſ	T		Ż	
V	¥.	\mathbb{Z}	4	5

Summary

AlexNet Successors

ILSVRC 2012: Alexnet's Top-5 error rate 15.3 % Two separate data flows for 2 GPUs, 60M parameters. Deep Learning ReLUs, dropout. ConvNets Successes ILSVRC 2013: ZFNet's Top-5 error rate 11.2 % • ImageNet Dataset • AlexNet results Larger number of smaller filters, deeper. AlexNet AlexNet Successors ILSVRC 2014: VGG Net's Top 5 error rate 6.8 % **Recurrent Nets** Other remarks 22 layers of neurons

ILSVRC 2014: GoogLeNet's Top 5 error rate 6.66 %

- More than 30 layers of neurons.
- Inception modules instead of convolutional (a module containing several convolutional layers with small filters, and pooling).
- Only 5M parameters (compared to 60M of AlexNet)
- Human error rate (not easily obtainable) is 5.1 %

ILSVRC 2015: ResNet's Top 5 error 3.6 %

- 152 layers (2-3 weeks on 8 GPUs)
- Skip connections: each layer is trained to residuals of the previous layer.

Recurrent Neural Networks

Recurrent NNs

Memory:

- Feedforward NNs (including ConvNets) do not have a memory:
 - Fixed-sized vector as input (e.g. an image), fixed-sized vector as output (e.g. probabilities of different classes).
 - Fixed amount of computational steps (e.g. the number of layers in the model).
- In real world, reasoning is a lot about memory, context, thought persistance.
- Even if your inputs/outputs are fixed vectors, it is still possible to process them in a sequential manner.

Recurrent Neural Networks (RNNs):

- Allow us to operate over *sequences of vectors*.
- Feedback loops in network implement the concept of memory.
- A part of network A transforms the current input x_t and the previous network state into the network output.

RNN unrolled in time: multiple copies of the same network, each passing a message to a successor:

Both pictures from Christopher Olah: Understanding LSTMs

Deep Learning

ConvNets

Successes

Recurrent Nets

- Recurrent NNs
- RNN Applications
- BP in time
- Dependencies
- LSTM
- LSTM gates
- Image captioning
- Captioning results

Other remarks

Deep Learning

Recurrent Nets

Recurrent NNs

RNN Applications

• BP in time

Other remarks

Summary

LSTM LSTM gates

Dependencies

• Image captioning

• Captioning results

ConvNets

Successes

RNN Applications

Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks

- 1. Vanilla mode of processing without RNN, from fixed-sized input to fixed-sized output (e.g. image classification).
- 2. Sequence output (e.g. image captioning takes an image and outputs a sentence of words).
- 3. Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing positive or negative sentiment).
- 4. Sequence input and sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French).
- 5. Synced sequence input and output (e.g. video classification where we wish to label each frame of the video).

... speech recognition, language modeling, machine translation, attention modeling, ...

Backpropagation through time

Backprop through time (BPTT):

- A method to compute the gradients for weights of RNNs.
- Unroll the network several steps in time:

RNN Applications

• BP in time

Recurrent Nets
• Recurrent NNs

Deep Learning

ConvNets

Successes

- Dependencies
- LSTM
- LSTM gates
- Image captioning
- Captioning results

Other remarks

- This can be viewed as a "normal" feedforward network with the same weights in all the layers.
- BPTT is equivalent to normal BP on unfolded networks, with the exception that *the gradients for a particular weight are sumed over the layers*.

Short- and long-term dependencies

Dependencies: RNNs connect previous information to the present task, e.g.

- previous video frames help us understand the present frame,
- a language model predicts the next word based on previous ones, ...

ConvNets

Deep Learning

Successes

Recurrent Nets

- Recurrent NNs
- RNN Applications
- BP in time
- Dependencies
- LSTM
- LSTM gates
- Image captioning
- Captioning results

Other remarks

Summary

Short-term dependencies: easy for vanilla RNNs.

- Predict the last word in the sequence "the clouds are in the [sky]".
- The gap between relevant information and the place it is needed is small.

Long-term dependencies: hard for vanilla RNNs, special units required.

- Predict the last word in the sequence "I was born in France. Blah blah blah ... blah. I speak fluently [French]."
- In theory, vanilla RNNs are absolutely capable of handling such long-term dependencies.
- In practice, RNNs don't seem to be able to learn them.

Christopher Olah: Understanding LSTMs

Long Short-Term Memory

LSTM Networks:

- Special kind of RNN explicitly designed to be capable of learning long-term dependencies.
 - Introduced by Hochreiter and Schmidhuber in 1997.
- In practice, all the successfull applications of RNNs were achieved by LSTM Networks.

Deep Learning

ConvNets

Successes

Recurrent Nets

- Recurrent NNs
- RNN Applications
- BP in time
- Dependencies
- LSTM
- LSTM gates
- Image captioning
- Captioning results

Other remarks

Long Short-Term Memory

LSTM Networks:

- Special kind of RNN explicitly designed to be capable of learning long-term dependencies.
- Introduced by Hochreiter and Schmidhuber in 1997.
- In practice, all the successfull applications of RNNs were achieved by LSTM Networks.
- A vanilla RNN unrolled in time:

Deep Learning

ConvNets

Successes

Recurrent Nets

- Recurrent NNs
- RNN Applications
- BP in time
- Dependencies
- LSTM
- LSTM gates
- Image captioning
- Captioning results

Other remarks

Long Short-Term Memory

LSTM Networks:

- Special kind of RNN explicitly designed to be capable of learning long-term dependencies.
- Introduced by Hochreiter and Schmidhuber in 1997.
- In practice, all the successfull applications of RNNs were achieved by LSTM Networks.
- An LSTM unrolled in time:

Deep Learning

ConvNets

Successes

Recurrent Nets

- Recurrent NNs
- RNN Applications
- BP in time
- Dependencies
- LSTM
- LSTM gates
- Image captioning
- Captioning results

Other remarks

LSTM gates

LSTM state (memory):

LSTM input gate:

LSTM forget gate:

LSTM output gate:

Christopher Olah: Understanding LSTMs

Image captioning

- Automated creation of image descriptions in natural language.
- A combination of
 - word embeddings,
 - ConvNets generating a high-level representation of the image, and
 - RNNs generating the textual description.
- The model is trained to maximize the likelihood of the target description sentence given the training image.

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

Vinyals et al., Show and Tell: A Neural Image Caption Generator. 2015

Successes Recurrent Nets

Deep Learning

ConvNets

- Recurrent NNs
- RNN Applications
- BP in time
- Dependencies
- LSTM
- LSTM gates
- Image captioning
- Captioning results

Other remarks

Image captioning results

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A skateboarder does a trick _____on a ramp.

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the side of the road.

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked in a parking lot.

Describes without errors

Describes with minor errors

Somewhat related to the image

Unrelated to the image

Vinyals et al., Show and Tell: A Neural Image Caption Generator. 2015

Other remarks

R DR	Software
	CaffeTheanno
Deep Learning	– TensorFlow
ConvNets	– Torch
Successes	– Keras
Recurrent Nets	_
Other remarks	
Software	
• Resources	

Resources

- Yann LeCun, Yoshua Bengio, Geoffrey Hinton: Deep Learning. Nature, 2015. doi:10.1038/nature14539
- Michael A. Nielsen: Neural Networks and Deep Learning, Determination Press, 2015
 - Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning.
- Christopher Olah: Deep Learning, NLP, and Representations
- Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition
- Adit Deshpande: Understanding CNNs (Part 1, Part 2, Part 3)
- YN²: A Guide to Deep Learning
- Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks
- Christopher Olah: Understanding LSTM Networks
- Denny Britz: Recurrent neural networks tutorial

Recurrent Nets

Competencies

After this lecture, a student shall be able to ...

- 1. define what a deep learning is and how it is related to representation learning;
- 2. describe word embeddings (word2vec) and exemplify its features;
- 3. explain why deep networks are hard to train, especially the vanishing gradient effect;
- 4. describe the factors that facilitated the practical use of deep learning in the last decade;
- 5. explain what an autoencoder is and how it is related to pre-training of deep nets;
- 6. explain the principle of convolutional layers, the importance of weight sharing and pooling, and describe their main differences from fully connected layers;
- 7. give examples of applications of convolutional networks to image processing;
- 8. describe the difference of recurrent neural networks from feedforward networks;
- 9. describe the unrolling of RNN in time and give an example;
- 10. explain the difference between short- and long-term dependencies when processing sequences;
- 11. describe LSTM and its main differences from a regular RNN unit;
- 12. explain what the backpropagation in time is and what it is used for;
- 13. give examples of applications of recurrent neural networks to language processing.