Expectation-Maximization Algorithm.

Petr Pošík petr.posik@fel.cvut.cz

Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics

MLE		2
Likelihood .		. 3
	ata	
K-means		8
Algorithm .		. 9
EM for Mixtures		16
General mix	ure	17
	res	
EM for HMM		37
HMM		38
	ıg	
	istics	
Summary		42
Compotoncia		12

Likelihood maximization

Let's have a random variable *X* with probability distribution $p_X(x|\theta)$.

The notation emphasizes that the distribution is parameterized by $\theta \in \Theta$, i.e. the distribution comes from certain parametric family. Θ is the space of possible parameter values.

Learning task: assume the parameters θ are unknown, but we have an i.i.d. training dataset $T = \{x_1, \dots, x_n\}$ which can be used to estimate the unknown parameters.

■ The probability of observing dataset T given some parameter values θ is

$$P(T|\theta) = \prod_{j=1}^{n} p_X(x_j|\theta) \stackrel{\text{def}}{=} L(\theta; T).$$

- This probability can be interpretted as a degree with which the model parameters θ conform to the data T. It is thus called the **likelihood of parameters** θ w.r.t. data T.
- The optimal θ^* is obtained by maximizing the likelihood

$$\theta^* = \arg\max_{\theta \in \Theta} L(\theta; T) = \arg\max_{\theta \in \Theta} \prod_{j=1}^n p_X(x_j | \theta)$$

■ Since $\arg \max_x f(x) = \arg \max_x \log f(x)$, we often maximize the **log-likelihood** $l(\theta; T) = \log L(\theta; T)$

$$\theta^* = \arg\max_{\theta \in \Theta} l(\theta; T) = \arg\max_{\theta \in \Theta} \log \prod_{j=1}^n p_X(x_j | \theta) = \arg\max_{\theta \in \Theta} \sum_{j=1}^n \log p_X(x_j | \theta),$$

which is often easier than maximization of L.

P. Pošík © 2020

Artificial Intelligence - 3 / 43

Question

Although we defined the likelihood for discrete distributions only, an analogical definition can be made for continuous distributions.

For normal distribution $N(x|\theta)$, the parameters are $\theta = (\mu, \sigma^2)$.

What are the maximum likelihood estimates $\theta^* = (\mu^*, v^*)$ of the parameters of normal distribution, given the training data $T=(x_1,\ldots,x_n)?$

$$\mu^* = \frac{1}{n-1} \sum_{i=1}^n x_i \quad \text{and} \quad v^* = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu^*)^2$$

$$\mu^* = \frac{1}{n-1} \sum_{i=1}^n x_i \quad \text{and} \quad v^* = \frac{1}{n} \sum_{i=1}^n (x_i - \mu^*)^2$$

$$\mu^* = \frac{1}{n} \sum_{i=1}^n x_i \quad \text{and} \quad v^* = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu^*)^2$$

$$v^* = \frac{1}{n-1} \sum_{i=1}^{n} x_i$$
 and $v^* = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu^*)^2$

$$t^* = \frac{1}{n} \sum_{i=1}^n x_i$$
 and $v^* = \frac{1}{n-1} \sum_{i=1}^n (x_i - \mu^*)^2$

$$\mu^* = \frac{1}{n} \sum_{i=1}^n x_i \quad \text{and} \quad v^* = \frac{1}{n} \sum_{i=1}^n (x_i - \mu^*)^2$$

P. Pošík © 2020

Artificial Intelligence - 4 / 43

Incomplete data

Assume we cannot observe the objects completely:

- r.v. *X* describes the observable part, r.v. *K* describes the unobservable, hidden part.
- We assume there is an underlying distribution $p_{XK}(x,k|\theta)$ of objects (x,k).

Learning task: we want to estimate the model parameters θ , but the training set contains i.i.d. samples for the observable part only, i.e. $T_X = \{x_1, \dots, x_n\}$. (Still, there also exists a hidden, unobservable dataset $T_K = \{k_1, \dots, k_n\}$.)

- If we had complete data (T_X, T_K) , we could directly optimize $l(\theta; T_X, T_K) = \log P(T_X, T_K | \theta)$. But we do not have access to T_K .
- If we would like to maximize

$$l(\theta; T_X) = \log P(T_X | \theta) = \log \sum_{T_K} P(T_X, T_K | \theta),$$

the summation inside log() results in complicated expressions, or we would have to use numerical methods.

- Our state of knowledge about T_K is given by $P(T_K|T_X,\theta)$.
- The complete-data likelihood $L(\theta; T_X, T_K) = P(T_X, T_K | \theta)$ is a random variable since T_K is unknown, random, but governed by the underlying distribution.
- Instead of optimizing it directly, consider its expected value under the posterior distribution $P(T_K|T_X,\theta)$ over latent variables (E-step), and then maximize this expectation (M-step).

P. Pošík © 2020

Artificial Intelligence – 5 / 43

Expectation-Maximization algorithm

EM algorithm:

- A general method of finding MLE of prob. dist. parameters from a given dataset when data is incomplete (hidden variables, or missing values).
- Hidden variables: mixture models, Hidden Markov models, ...
- It is a family of algorithms, or a recipe to derive a ML estimation algorithm for various kinds of probabilistic models.
- 1. Pretend that you know θ . (Use some initial guess $\theta^{(0)}$.) Set iteration counter i=1.
- 2. **E-step:** Use the current parameter values $\theta^{(i-1)}$ to find the posterior distribution of the latent variables $P(T_K|T_X,\theta^{(i-1)})$. Use this posterior distribution to find the expectation of the complete-data log-likelihood evaluated for some general parameter values θ :

$$Q(\theta, \theta^{(i-1)}) = \sum_{T_K} P(T_K | T_X, \theta^{(i-1)}) \log P(T_X, T_K | \theta).$$

3. **M-step:** maximize the expectation, i.e. compute an updated estimate of θ as

$$\theta^{(i)} = \arg \max_{\theta \in \Theta} Q(\theta, \theta^{(i-1)}).$$

4. Check for convergence: finish, or advance the iteration counter $i \leftarrow i + 1$, and repeat from 2.

P. Pošík © 2020

Artificial Intelligence – 6 / 43

EM algorithm features

Pros:

- Among the possible optimization methods, EM exploits the structure of the model.
- For $p_{X|K}$ from exponential family:
 - M-step can be done analytically and there is a unique optimizer.
 - The expected value in the E-step can be expressed as a function of θ without solving it explicitly for each θ .
- $P(T_X|\theta^{(i)}) \ge P(T_X|\theta^{(i-1)})$, i.e. the process finds a local optimum.
- Works well in practice.

Cons:

- Not guaranteed to get globally optimal estimate.
- MLE can overfit; use MAP instead (EM can be used as well).
- Convergence may be slow.

P. Pošík © 2020

Artificial Intelligence – 7 / 43

K-means 8 / 43

K-means algorithm

Clustering is one of the tasks of unsupervised learning.

K-means algorithm for clustering [Mac67]:

- *K* is the apriori given number of clusters.
- Algorithm:
 - 1. Choose *K* centroids μ_k (in almost any way, but every cluster should have at least one example.)
 - 2. For all x, assign x to its closest μ_k .
 - 3. Compute the new position of centroids μ_k based on all examples x_i , $i \in I_k$, in cluster k.
 - 4. If the positions of centroids changed, repeat from 2.

Algorithm features:

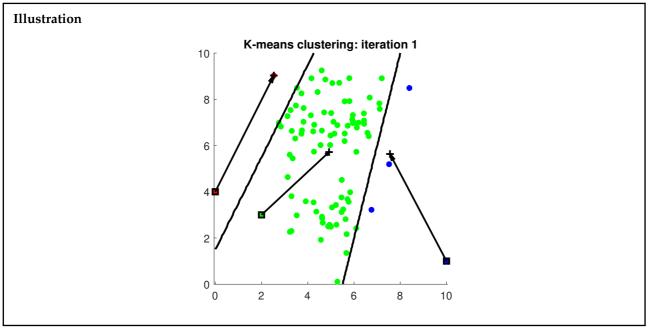
■ Algorithm minimizes the function (intracluster variance):

$$J = \sum_{j=1}^{k} \sum_{i=1}^{n_j} |x_{i,j} - c_j|^2 \tag{1}$$

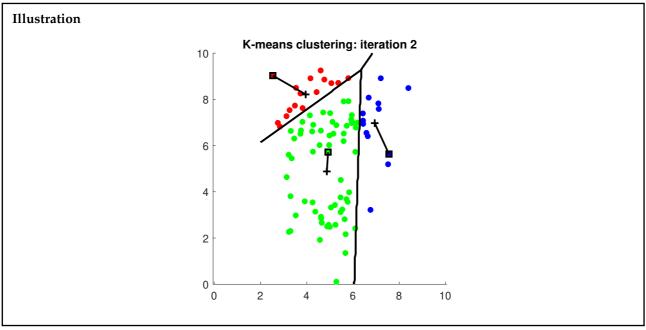
■ Algorithm is fast, but each time it can converge to a different local optimum of *J*.

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297, Berkeley, 1967. University of California Press.

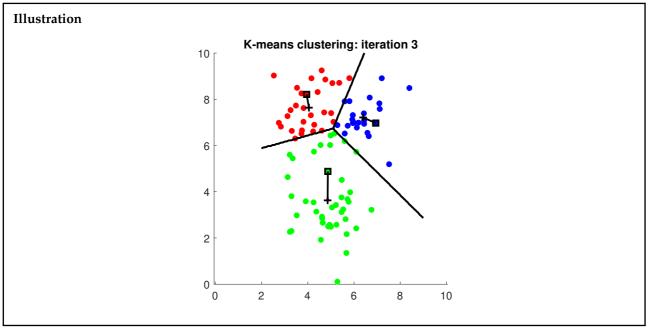
P. Pošík © 2020 Artificial Intelligence – 9 / 43



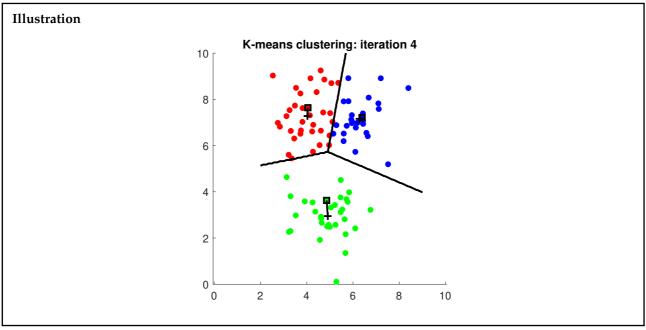
P. Pošík © 2020 Artificial Intelligence – 10 / 43



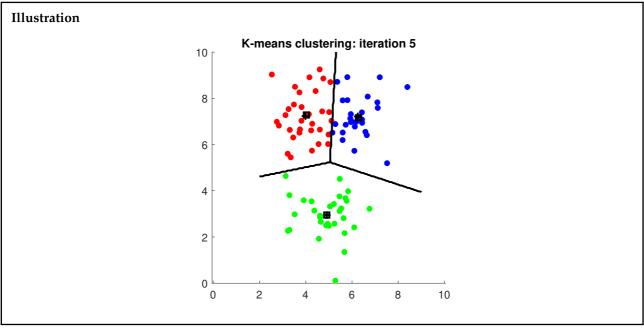
P. Pošík © 2020 Artificial Intelligence – 11 / 43



P. Pošík © 2020 Artificial Intelligence – 12 / 43



P. Pošík © 2020 Artificial Intelligence – 13 / 43



P. Pošík © 2020 Artificial Intelligence – 14 / 43

K-means: EM view

Assume:

- An object can be in one of the |K| states with equal probabilities.
- All $p_{X|K}(x|k)$ are isotropic Gaussians: $p_{X|K}(x|k) = \mathcal{N}(x|\mu_k, \sigma^2\mathbf{I})$.

Recognition (Part of E-step):

- The task is to decide the state k for each x, assuming all μ_k are known.
- lacktriangleright The Bayesian strategy (minimizes the probability of error) chooses the cluster with the center closest to observation x:

$$q^*(x) = \arg\min_{k \in K} (x - \mu_k)^2$$

- If μ_k , $k \in K$, are not known, it is a parametrized strategy $q_{\theta}(x)$, where $\theta = (\mu_k)_{k=1}^K$.
- Deciding state k for each x assuming known μ_k is actually the computation of a degenerate probability distribution $P(T_K|T_X,\theta^{(i-1)})$, i.e. the first part of E-step.

Learning (The rest of E-step and M-step):

■ Find the maximum-likelihood estimates of μ_k based on known $(x_1, k_1), \dots, (x_l, k_l)$:

$$\mu_k^* = \frac{1}{|I_k|} \sum_{i \in I_k} x_i,$$

where I_k is a set of indices of training examples (currently) belonging to state k.

■ This completes the E-step and implements the M-step.

P. Pošík © 2020

Artificial Intelligence – 15 / 43

General mixture distributions

Assume the data are samples from a distribution factorized as

$$p_{XK}(x,k) = p_K(k)p_{X|K}(x|k), \text{ i.e.}$$

$$p_X(x) = \sum_{k \in K} p_K(k)p_{X|K}(x|k)$$

and that the distribution is known (except the distribution parameters).

Recognition (Part of E-step):

- Let's define the result of recognition not as a single decision for some state *k* (as done in K-means), but rather as
- \blacksquare a set of posterior probabilities (sometimes called *responsibilities*) for each k given x_i

$$\gamma_k(x_i) = p_{K|X}(k|x_i, \theta^{(t)}) = \frac{p_{X|K}(x_i|k)p_K(k)}{\sum_{k \in K} p_{X|K}(x_i|k)p_K(k)}$$

that an object was in state k when observation x_i was made.

■ The $\gamma_k(x)$ functions can be viewed as discriminant functions.

P. Pošík © 2020

Artificial Intelligence – 17 / 43

General mixture distributions (cont.)

Learning (The rest of E-step and M-step):

- Given the training multiset $T = (x_i, k_i)_{i=1}^n$ (or the respective $\gamma_k(x_i)$ instead of k_i),
- assume $\gamma_k(x)$ is known, $p_K(k)$ are not known, and $p_{X|K}(x|k)$ are known except the parameter values θ_k , i.e. we shall write $p_{X|K}(x|k,\theta_k)$.
- Let the object *model m* be a "set" of all unknown parameters $m = (p_K(k), \theta_k)_{k \in K}$.
- The log-likelihood of model m if we assume k_i is known:

$$\log L(m) = \log \prod_{i=1}^{n} p_{XK}(x_i, k_i) = \sum_{i=1}^{n} \log p_K(k_i) + \sum_{i=1}^{n} \log p_{X|K}(x_i | k_i, \theta_{k_i})$$

■ The expectation of log-likelihood of model m if we assume a distribution γ_k is known for all observations x_i :

$$\log L(m) = \sum_{i=1}^{n} \sum_{k \in K} \gamma_k(x_i) \log p_K(k) + \sum_{i=1}^{n} \sum_{k \in K} \gamma_k(x_i) \log p_{X|K}(x_i|k, \theta_k)$$

■ We search for the optimal model using maximum likelihood:

$$m^* = (p_K^*(k), \theta_k^*) = \arg\max_{m} \log L(m)$$

i.e. we compute

$$p_K^*(k) = \frac{1}{n} \sum_{i=1}^n \gamma_k(x_i)$$
 and solve k independent tasks

$$\theta_k^* = \arg\max_{\theta_k \in \Theta_k} \sum_{i=1}^n \gamma_k(x_i) \log p_{X|K}(x_i|k,\theta_k).$$

P. Pošík © 2020

Artificial Intelligence – 18 / 43

EM for mixture distribution

Unsupervised learning algorithm [?] for general mixture distributions:

- 1. Initialize the model parameters $m = ((p_K(k), \theta_k) \forall k)$.
- 2. Perform the **recognition** task, i.e. assuming m is known, compute

$$\gamma_{k}(x_{i}) = \hat{p}_{K|X}(k|x_{i}) = \frac{p_{K}(k)p_{X|K}(x_{i}|k,\theta_{k})}{\sum_{j \in K} p_{K}(j)p_{X|K}(x_{i}|j,\theta_{j})}.$$

3. Perform the **learning** task, i.e. assuming $\gamma_k(x_i)$ are known, update the ML estimates of the model parameters $p_K(k)$ and θ_k for all k:

$$\begin{aligned} p_K(k) &= \frac{1}{n} \sum_{i=1}^n \gamma_k(x_i) \\ \theta_k &= \arg \max_{\theta_k \in \Theta_k} \sum_{i=1}^n \gamma_k(x_i) \log p_{X|K}(x_i|k, \theta_k) \end{aligned}$$

4. Iterate 2 and 3 until the model stabilizes.

Features:

- The algorithm does not specify how to update θ_k in step 3, it depends on the chosen form of $p_{X|K}$.
- The model created in iteration t is always at least as good as the model from iteration t 1, i.e. L(m) = P(T|m) increases.

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297, Berkeley, 1967. University of California Press.

P. Pošík © 2020

Artificial Intelligence – 19 / 43

Special Case: Gaussian Mixture Model

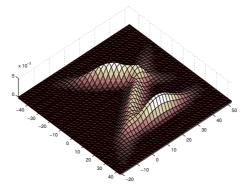
Each *k*th component is a Gaussian distribution:

$$\mathcal{N}(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{\frac{D}{2}} |\Sigma_k|^{\frac{1}{2}}} \exp\{-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)\}$$

Gaussian Mixture Model (GMM):

$$p(x) = \sum_{k=1}^{K} p_K(k) p_{X|K}(x|k, \theta_k) = \sum_{k=1}^{K} \alpha_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

assuming
$$\sum_{k=1}^{K} \alpha_k = 1$$
 and $0 \le \alpha_k \le 1$



P. Pošík © 2020

Artificial Intelligence – 20 / 43

EM for GMM

- 1. Initialize the model parameters $m = ((p_K(k), \mu_k, \Sigma_k) \forall k)$.
- 2. Perform the **recognition** task as in the general case, i.e. assuming m is known, compute

$$\gamma_k(x_i) = \hat{p}_{K|X}(k|x_i) = \frac{p_K(k)p_{X|K}(x_i|k,\theta_k)}{\sum_{j\in K} p_K(j)p_{X|K}(x_i|j,\theta_j)} = \frac{\alpha_k \mathcal{N}(x_i|\mu_k,\Sigma_k)}{\sum_{j\in K} \alpha_j \mathcal{N}(x_i|\mu_j,\Sigma_j)}.$$

3. Perform the **learning** task, i.e. assuming $\gamma_k(x_i)$ are known, update the ML estimates of the model parameters α_k , μ_k and Σ_k for all k:

$$\begin{aligned} \alpha_k &= p_K(k) = \frac{1}{n} \sum_{i=1}^n \gamma_k(x_i) \\ \mu_k &= \frac{\sum_{i=1}^n \gamma_k(x_i) x_i}{\sum_{i=1}^n \gamma_k(x_i)} \\ \Sigma_k &= \frac{\sum_{i=1}^n \gamma_k(x_i) (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_{i=1}^n \gamma_k(x_i)} \end{aligned}$$

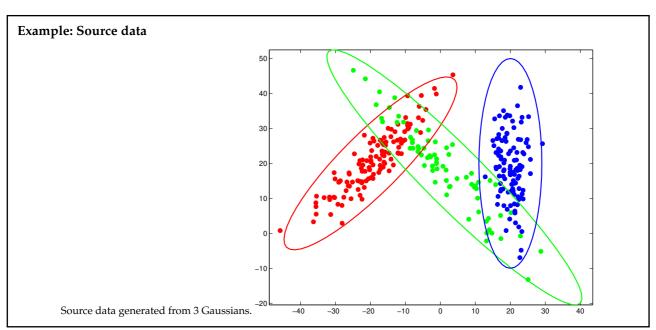
4. Iterate 2 and 3 until the model stabilizes.

Remarks:

- **E** Each data point belongs to all components to a certain degree $\gamma_k(x_i)$.
- The eq. for μ_k is just a weighted average of x_i s.
- The eq. for Σ_k is just a weighted covariance matrix.

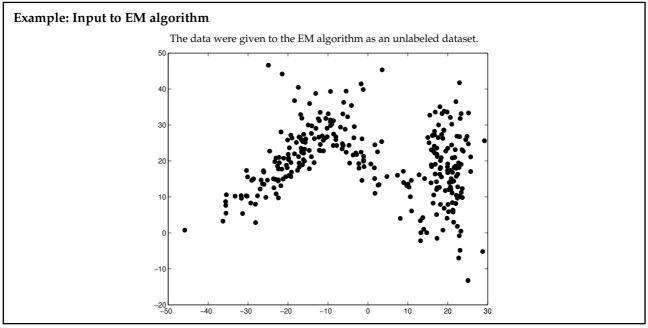
P. Pošík © 2020

Artificial Intelligence - 21 / 43

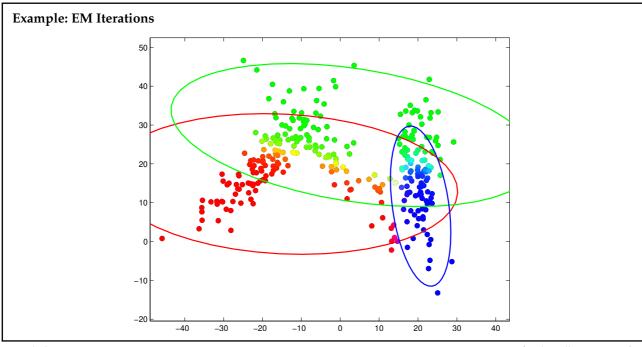


P. Pošík © 2020

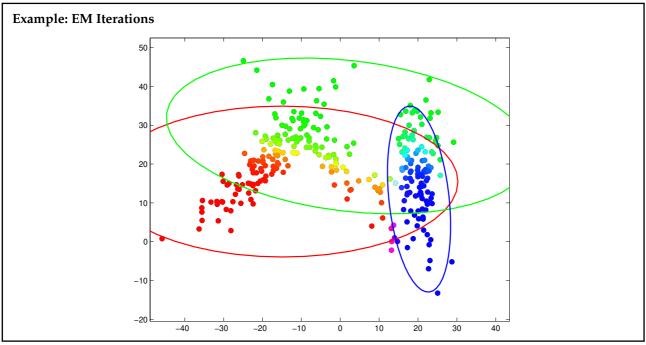
Artificial Intelligence – 22 / 43



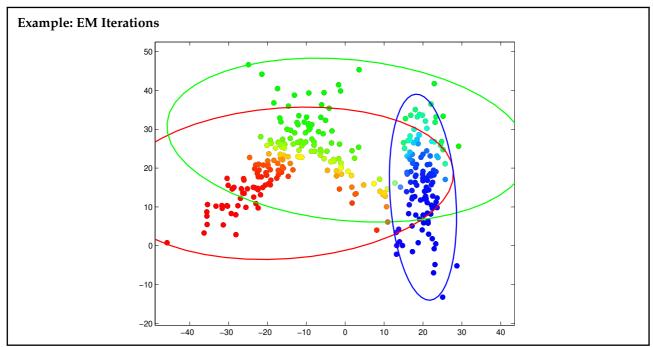
P. Pošík © 2020 Artificial Intelligence – 23 / 43



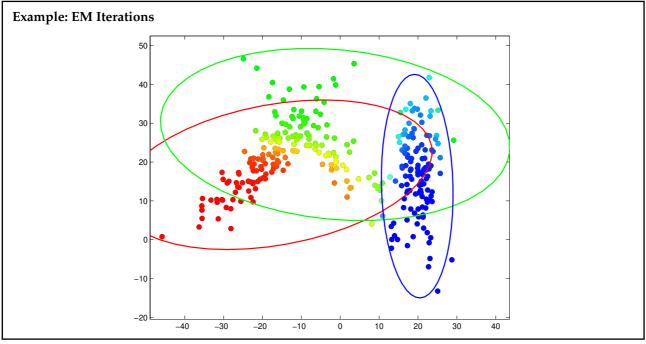
P. Pošík © 2020 Artificial Intelligence – 24 / 43



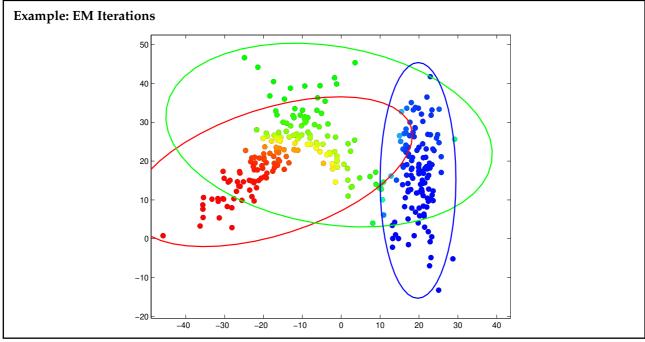
P. Pošík © 2020 Artificial Intelligence – 25 / 43



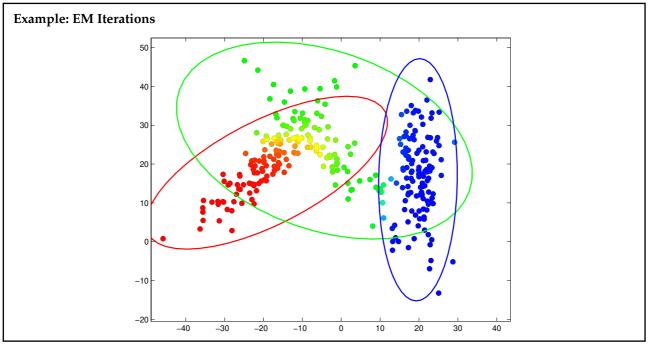
P. Pošík © 2020 Artificial Intelligence – 26 / 43



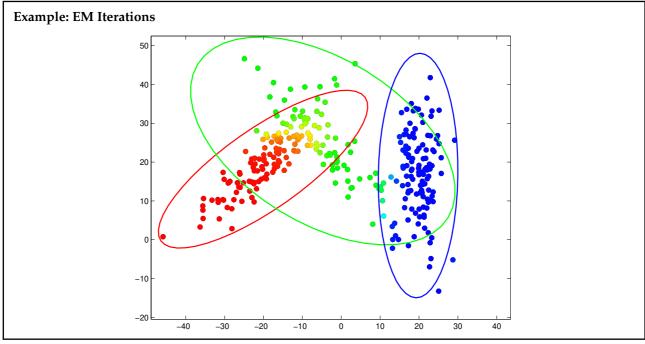
P. Pošík © 2020 Artificial Intelligence – 27 / 43



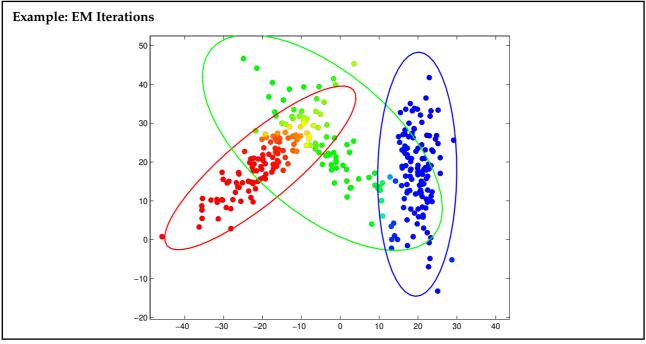
P. Pošík © 2020 Artificial Intelligence – 28 / 43



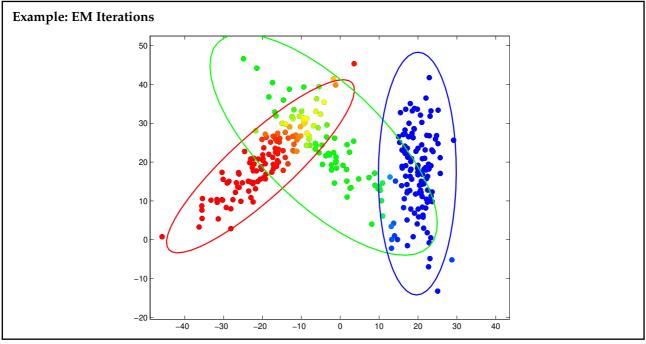
P. Pošík © 2020 Artificial Intelligence – 29 / 43



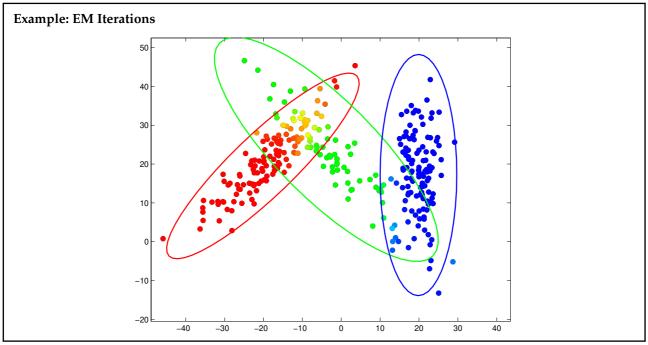
P. Pošík © 2020 Artificial Intelligence – 30 / 43



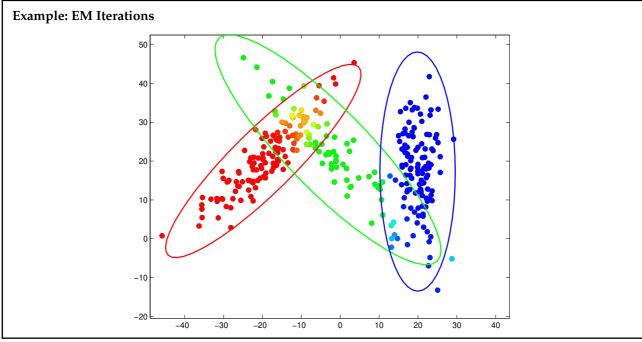
P. Pošík © 2020 Artificial Intelligence – 31 / 43



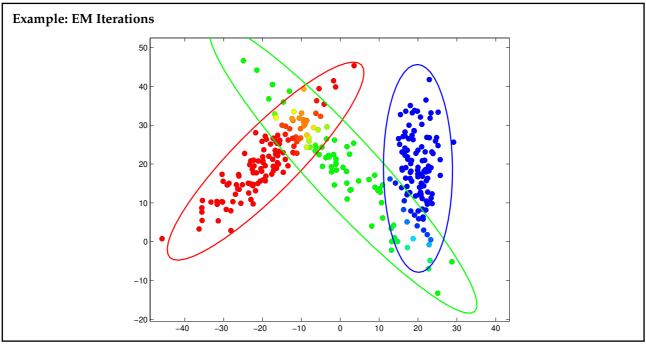
P. Pošík © 2020 Artificial Intelligence – 32 / 43



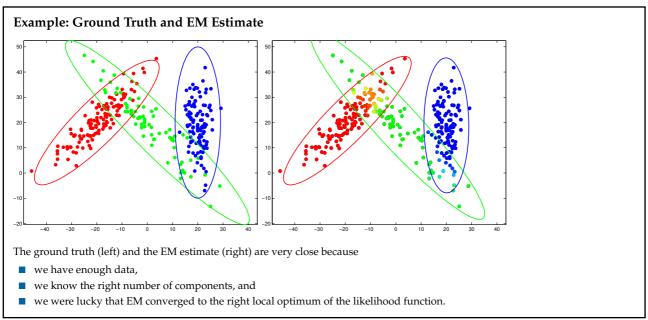
P. Pošík © 2020 Artificial Intelligence – 33 / 43



P. Pošík © 2020 Artificial Intelligence – 34 / 43



P. Pošík © 2020 Artificial Intelligence – 35 / 43



P. Pošík © 2020 Artificial Intelligence – 36 / 43

Baum-Welch Algorithm:

EM for HMM 37 / 43

Hidden Markov Model

1st order HMM is a generative probabilistic model formed by

- **a** sequence of hidden variables $X_0, ..., X_t$, the domain of all of them is the set of states $\{s_1, ..., s_N\}$.
- **a** sequence of observed variables E_1, \ldots, E_t , the domain of all of them is the set of observations $\{v_1, \ldots, v_M\}$.
- \blacksquare an initial distribution over hidden states $P(X_0)$,
- \blacksquare a transition model $P(X_t|X_{t-1})$, and
- an emission model $P(E_t|X_t)$.

Simulating HMM:

- 1. Generate an initial state x_0 according to $P(X_0)$. Set $t \leftarrow 1$.
- 2. Generate a new current state x_t according to $P(X_t|x_{t-1})$.
- 3. Generate an observation e_t according to $P(E_t|x_t)$.
- 4. Advance time $t \leftarrow t + 1$.
- 5. Finish, or repeat from step 2.

With HMM:

- efficient algorithms exist for solving inference tasks;
- but we have no idea (so far) how to learn HMM parameters from the observation sequence, because we do not have access to the hidden states.

P. Pošík © 2020

Artificial Intelligence – 38 / 43

Learning HMM from data

Is it possible to learn HMM from data?

- No known way to analytically solve for the model which maximizes the probability of observations.
- No optimal way of estimating the model parameters from the observation sequences.
- We can find model parameters such that the probability of observations is maximized → Baum-Welch algorithm (a special case of EM).

Let's use a slightly different notation to emphasize the model parameters:

- \blacksquare $\pi = [\pi_i] = [P(X_1 = s_i)] \dots$ vector of the initial probabilities of states
- lacksquare $A = [a_{i,j}] = [P(X_t = s_j | X_{t-1} = s_i)] \dots$ the matrix of transition probabilities to next state given the current state
- $B = [b_{i,k}] = [P(E_t = v_k | X_t = s_i)]$... the matrix of observation probabilities given the current state
- The whole set of **HMM parameters** is then $\theta = (\pi, A, B)$

The algorithm (presented on the next slides)

- computes the expected numbers of being in a state or taking a transition given the observations and *the current model parameters* $\theta = (\pi, A, B)$, and then
- \blacksquare computes the new estimate of model parameters $\theta' = (\pi', A', B')$,
- such that $P(e_1^t|\theta') \ge P(e_1^t|\theta)$.

P. Pošík © 2020

Artificial Intelligence - 39 / 43

Sufficient statistics

Let's define

• the probability of transition from state s_i at time t to state s_j at time t+1, given the model and the observation sequence e_i^t :

$$\begin{split} \xi_t(i,j) &= P(X_t = s_i, X_{t+1} = s_j | e_1^t, \theta) = \frac{\alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}{P(e_1^t | \theta)} = \\ &= \frac{\alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(s_i) a_{ij} b_{jk} \beta_{t+1}(s_j)}, \end{split}$$

where α_t and β_t are the forward and backward messages computed by the forward-backward algorithm, and

 \blacksquare the probability of being in state s_i at time t, given the model and the observation sequence:

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j).$$

Then we can interpret

P. Pošík © 2020

Artificial Intelligence – 40 / 43

Baum-Welch algorithm

The re-estimation formulas are

$$\pi_i' =$$
 expected frequency of being in state s_i at time $(t = 1) =$
= $\gamma_1(i)$

$$\begin{aligned} a'_{ij} &= \frac{\text{expected number of transitions from } s_i \text{ to } s_j}{\text{expected number of transitions from } s_i} = \\ &= \frac{\sum_{k=1}^{T-1} \xi_k(i,j)}{\sum_{k=1}^{T-1} \gamma_k(i)} \end{aligned}$$

$$b'_{jk} = \frac{\text{expected number of times being in state } s_j \text{ and observing } v_k}{\text{expected number of times being in state } s_j} = \\ = \frac{\sum_{t=1}^T I(e_t = v_k) \gamma_t(j)}{\sum_{t=1}^T \gamma_t(j)}$$

As with other EM variants, with the old model parameters $\theta = (\pi, A, B)$ and new, re-estimated parameters $\theta' = (\pi', A', B')$, the new model is at least as likely as the old one:

$$P(e_1^t|\theta') \ge P(e_1^t|\theta)$$

The above equations are used iteratively with θ' taking place of θ .

P. Pošík © 2020

Artificial Intelligence – 41 / 43

Summary 42 / 43

Competencies

After this lecture, a student shall be able to ...

- 1. define and explain the task of maximum likelihood estimation;
- 2. explain why we can maximize log-likelihood instead of likelihood, describe the advantages;
- 3. describe the issues we face when trying to maximize the likelihood in case of incomplete data;
- 4. explain the general high-level principle of Expectation-Maximization algorithm;
- 5. describe the pros and cons of the EM algorithm, especially what happens with the likelihood in one EM iteration;
- 6. describe the EM algorithm for mixture distributions, including the notion of responsibilities;
- 7. explain the Baum-Welch algorithm, i.e. the application of EM to HMM; what parameters are learned and how (conceptually).

P. Pošík © 2020

Artificial Intelligence – 43 / 43