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Decision strategy design

P. Pošı́k c© 2020 petr.posik@fel.cvut.cz Artificial Intelligence – 3 / 45

Using an observation x ∈ X of an object of interest with a hidden state k ∈ K, we should design a decision
strategy q : X → D which would be optimal with respect to certain criterion.

Bayesian decision theory requires complete statistical information pXK(x, k) of the object of interest to be
known, and a suitable penalty function W : K× D → Rmust be provided.

Non-Bayesian decision theory studies tasks for which some of the above information is not available.

In practical applications, typically, none of the probabilities are known! The designer is only provided
with the training (multi)set T = {(x1, k1), (x2, k2), . . . , (xl , kl)} of examples.

■ It is simpler to provide good examples than to gain complete or partial statistical model, build
general theories, or create explicit descriptions of concepts (hidden states).

■ The training (multi)set is an unbiased finite sample from pXK (at best); the found decision strategy is
just an approximation of the Bayes strategy.

When do we need to use learning?

■ When knowledge about the recognized object is insufficient to solve the PR task.

■ Most often, we have insufficient knowledge about pX|K(x|k).
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Supervised learning:

■ A training multi-set of examples is available. Correct answers (hidden state, class, the
quantity we want to predict) are known for all observations.

■ Classification: the answers (the output variable of the model) are nominal, i.e.
the value specifies a class ID. (predict spam/ham based on email contents,
predict 0/1/. . . /9 based on the image of the number, etc.)

■ Regression: the answers (the output variable of the model) are quantitative,
often continuous (predict temperature in Prague based on date and time, predict
height of a person based on weight and gender, etc.)

Unsupervised learning:

■ A training multi-set of examples is available. Correct answers are not known, they
must be sought in data itself⇒ data analysis.

Semisupervised learning:

■ A training multi-set of examples is available. Correct answers are known only for a
subset of the training set.

Reinforcement learning:

■ A training multi-set of examples is not available. Correct answers, or rather rewards
for good decisions in the past, are given occasionally after decisions are taken.
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1. Assume pXK(x, k) = pXK|Θ(x, k|θ) has a particular form (e.g. Gaussian, mixture of
Gaussians, piece-wise constant) with a small number of parameters Θ.

2. Estimate the values of parameters Θ using the training set T.

3. Solve the classifier design problem as if the estimated p̂XK(x, k) = pXK|Θ(x, k|θ̂) was

the true (and unknown) pXK(x, k).

Pros and cons:

■ If the true pXK(x, k) does not have the assumed form, the resulting strategy q′(x) can
be arbitrarilly bad, even if the training set size |T| approaches infinity.

■ Implementation is often straightforward, especially if the parameters Θk are assumed
to be independent for each class (naive bayes classifier).
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■ Choose a class Q of strategies qΘ : X → D. The class Q is usually given as a set of
parametrized strategies of the same kind.

■ Learning then amounts to selecting a particular strategy qθ∗ from the a priori
known set Q using the information provided as training set T.

■ Natural criterion for the selection of one particular strategy is the risk R(qΘ), but
it cannot be computed because pXK(x, k) is unknown.

■ The strategy qθ∗ ∈ Q is chosen by minimizing some other surrogate criterion on
the training set which approximates R(qΘ).

■ The choice of the surrogate criterion determines the learning paradigm.
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Several surrogate criteria
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All the following surrogate criteria can be computed using the training data T.

Learning as parameter estimation

■ according to the maximum likelihood.

■ according to a non-random training set.

Learning as optimal strategy selection

■ by minimization of the empirical risk.

■ by minimization of the structural risk.
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All the following surrogate criteria can be computed using the training data T.

Learning as parameter estimation

■ according to the maximum likelihood.

■ The likelihood of an instance of the parameters θ = (θk : k ∈ K) is the probability of T given θ:

L(θ) = p(T|θ) = ∏
(xi ,ki)∈T

pXK|Θ(xi , ki |θ) = ∏
(xi ,ki)∈T

pK(ki)pX|K,Θ(x|k, θk)

■ Learning then means to find θ
∗ that maximizes the probability of T:

θ
∗ = (θ∗k : k ∈ K) = arg max

θ

L(θ)

which can be decomposed to

θ∗k = arg max
θk

∑
x∈X

α(x, k) log pX|K(x|k, θk),

where α(x, k) is the frequency of the pair (x, k) in T (i.e. T is multiset).

■ The recognition is then performed according to qθ∗ (x) = qΘ(x, θ∗).

■ according to a non-random training set.

Learning as optimal strategy selection

■ by minimization of the empirical risk.

■ by minimization of the structural risk.
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All the following surrogate criteria can be computed using the training data T.

Learning as parameter estimation

■ according to the maximum likelihood.

■ according to a non-random training set.

■ When random examples are not easy to obtain, e.g. in recognition of images.

■ T is carefully crafted by the designer:

■ it should cover the whole recognized domain

■ the examples should be recognized as typical (“quite probable”) prototypes of its class

■ Let T(k), k ∈ K, be a subset of the training set T with examples for state k. Then for all k ∈ K

θ∗k = arg max
θk

min
x∈T(k)

pX|K,Θ(x|k, Θk)

■ Note that the θ
∗ does not depend on the frequencies of (x, k) in T (i.e. T is a set).

Learning as optimal strategy selection

■ by minimization of the empirical risk.

■ by minimization of the structural risk.
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All the following surrogate criteria can be computed using the training data T.

Learning as parameter estimation

■ according to the maximum likelihood.

■ according to a non-random training set.

Learning as optimal strategy selection

■ by minimization of the empirical risk.

■ The set Q of parametrized strategies qΘ : X → D, penalty function W : K× D → R.

■ The quality of each strategy qθ ∈ Q (i.e. the quality of each parameter set θ) could be described
by the risk

R(θ) = R(qθ) = ∑
k∈K

∑
x∈X

pXK(x, k)W(k, qΘ(x, θ)),

but pXK is unknown.

■ We thus use the empirical risk Remp (training set error):

Remp(θ) = Remp(qθ) =
1

|T| ∑
(xi ,ki)∈T

W(ki , qΘ(xi , θ)).

■ Strategy qθ
∗ (x) = qΘ(x, θ

∗) is used where θ
∗ = arg minθ Remp(θ).

■ Examples: Perceptron, neural networks (backprop.), classification trees, . . .

■ by minimization of the structural risk.
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All the following surrogate criteria can be computed using the training data T.

Learning as parameter estimation

■ according to the maximum likelihood.

■ according to a non-random training set.

Learning as optimal strategy selection

■ by minimization of the empirical risk.

■ by minimization of the structural risk.

■ Based on Vapnik-Chervonenkis theory

■ Examples: Optimal separating hyperplane, support vector machine (SVM)
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Learning:

■ Needed when we do not have sufficient statistical info for recognition without
learning.

■ There are several types of learning differing in the types of information the learning
process can use.

Approaches to learning:

■ Assume pXK has a certain form and use T to estimate its parameters.

■ Assume the right strategy is in a particular set and use T to choose it.

■ There are several learning paradigms depending on the choice of criterion used
instead of Bayesian risk.
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We would like to fit a line of the form ŷ = w0 + w1x to the following data:

0 1 2 3 4

x

0

1

2

3

4

y

The parameters of a line with a good fit will likely be

A w0 = −1, w1 = −2

B w0 = − 1
2 , w1 = 1

C w0 = 3, w1 = − 1
2

D w0 = 2, w1 = 1
3
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Given a dataset of input vectors x(i) and the respective values of output variable y(i) . . .
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. . . we would like to find a linear model of this dataset . . .
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. . . which would minimize certain error between the known values of output variable and
the model predictions.
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Regression task is a supervised learning task, i.e.

■ a training (multi)set T = {(x(1), y(1)), . . . , (x(|T|), y(|T|))} is available, where

■ the labels y(i) are quantitative, often continuous (as opposed to classification tasks

where y(i) are nominal).

■ Its purpose is to model the relationship between independent variables (inputs)
x = (x1, . . . , xD) and the dependent variable (output) y.
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P. Pošı́k c© 2020 petr.posik@fel.cvut.cz Artificial Intelligence – 12 / 45

Regression task is a supervised learning task, i.e.

■ a training (multi)set T = {(x(1), y(1)), . . . , (x(|T|), y(|T|))} is available, where

■ the labels y(i) are quantitative, often continuous (as opposed to classification tasks

where y(i) are nominal).

■ Its purpose is to model the relationship between independent variables (inputs)
x = (x1, . . . , xD) and the dependent variable (output) y.

Linear regression is a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

ŷ = h(x) = w0 + w1x1 + . . . + wDxD = w0 + 〈w, x〉 = w0 + xwT ,

where

■ ŷ is the model prediction (estimate of the true value y),

■ h(x) is the linear model (a hypothesis),

■ w0, . . . , wD are the coefficients of the linear function, w0 is the bias, organized in a row
vector w,

■ 〈w, x〉 is a dot product of vectors w and x (scalar product),

■ which can be also computed as a matrix product xwT if w and x are row vectors.
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Homogeneous coordinates: If we add “1” as the first element of x so that
x = (1, x1, . . . , xD), then we can write the linear model in an even simpler form (without
the explicit bias term):

ŷ = h(x) = w0 · 1 + w1x1 + . . . + wDxD = 〈w, x〉 = xwT .

Matrix notation: If we organize the data into matrix X and vector y, such that

X =




1 x(1)

...
...

1 x(|T|)


 and y =




y(1)

...

y(|T|)


 ,

and similarly with ŷ, then we can write a batch computation of predictions for all data in
X as

ŷ = XwT .
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Any ML model has 2 operation modes:

1. learning (training, fitting) and

2. application (testing, making predictions).

The model h can be viewed as a function of 2 variables: h(x, w).

Model application: If the model is given (w is fixed), we can manipulate x to make
predictions:

ŷ = h(x, w) = hw(x).

Model learning: If the data is given (T is fixed), we can manipulate the model parameters
w to fit the model to the data:

w∗ = argmin
w

J(w, T).

How to train the model?
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Simple (univariate) regression deals with cases where x(i) = x(i), i.e. the examples are
described by a single feature (they are 1-dimensional).

Fitting a line to data:

■ find parameters w0, w1 of a linear model ŷ = w0 + w1x

■ given a training (multi)set T = {(x(i), y(i))}
|T|
i=1.

How to fit a line depending on the number of training examples |T|:

■ Given a single example (1 equation, 2 parameters)
⇒ infinitely many linear functions can be fitted.

■ Given 2 examples (2 equations, 2 parameters)
⇒ exactly 1 linear function can be fitted.

■ Given 3 or more examples (> 2 equations, 2 parameters)
⇒ no line can be fitted with zero error
⇒ a line which minimizes the “size” of error y− ŷ can be fitted:

w∗ = (w∗0 , w∗1) = argmin
w0 ,w1

J(w0, w1, T).
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The least squares method (LSM) suggests to choose such parameters w which minimize
the mean squared error (MSE)

JMSE(w) =
1

|T|

|T|

∑
i=1

(
y(i) − ŷ(i)

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
.

x

y

0

w0

|y(1) − ŷ(1) |

|y(2) − ŷ(2) |
|y(3) − ŷ(3) |

(x(1) , y(1))

(x(2) , y(2))

(x(3) , y(3))

ŷ = w0 + w1x

(x(1) , ŷ(1))

(x(2) , ŷ(2))

(x(3) , ŷ(3))

1

w1

Explicit solution:

w1 =
∑
|T|
i=1(x(i) − x)(y(i) − y)

∑
|T|
i=1(x(i) − x)2

=
sxy

s2
x

w0 = y− w1x
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The landscape of J in the space of parameters w0 and w1:
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Gradually better linear models found by an optimization method (BFGS):
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Given a function J(w0, w1) that should be minimized,

■ start with a guess of w0 and w1 and

■ change it, so that J(w0, w1) decreases, i.e.

■ update our current guess of w0 and w1 by taking a step in the direction opposite to
the gradient:

w← w− α∇J(w0, w1), i.e.

wd ← wd − α
∂

∂wd
J(w0, w1),

where all wis are updated simultaneously and α is a learning rate (step size).

For the cost function

J(w0, w1) =
1

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)2
=

1

|T|

|T|

∑
i=1

(
y(i) − (w0 + w1x(i))

)2
,

the gradient can be computed as

∂

∂w0
J(w0, w1) = −

2

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)
=

2

|T|

|T|

∑
i=1

(
hw(x(i))− y(i)

)

∂

∂w1
J(w0, w1) = −

2

|T|

|T|

∑
i=1

(
y(i) − hw(x(i))

)
x(i) =

2

|T|

|T|

∑
i=1

(
hw(x(i))− y(i)

)
x(i)
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Multivariate linear regression deals with cases where x(i) = (x
(i)
1 , . . . , x

(i)
D ), i.e. the

examples are described by more than 1 feature (they are D-dimensional).

Model fitting:

■ find parameters w = (w1, . . . , wD) of a linear model ŷ = xwT

■ given the training (multi)set T = {(x(i), y(i))}
|T|
i=1.

■ The model is a hyperplane in the D + 1-dimensional space.

Fitting methods:

1. Numeric optimization of J(w, T):

■ Works as for simple regression, it only searches a space with more dimensions.

■ Sometimes one needs to tune some parameters of the optimization algorithm to
work properly (learning rate in gradient descent, etc.).

■ May be slow (many iterations needed), but works even for very large D.

2. Normal equation:

w∗ = (XT X)−1XTy

■ Method to solve for the optimal w∗ analytically!

■ No need to choose optimization algorithm parameters.

■ No iterations.

■ Needs to compute (XT X)−1, which is O(D3). Slow, or intractable, for large D.
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Intuitively, which of the training data points have the biggest influence on the decision
whether a new, unlabeled data point shall be red or blue?

A Those which are closest to data points with the opposite color.

B Those which are farthest from the data points of the opposite color.

C Those which are near the middle of the points with the same color.

D None. All of the data points have the same importance.
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Let’s have the training dataset T = {(x(1), y(1)), . . . , (x(|T|), y(|T|)):

■ each example described by a vector x = (x1, . . . , xD),

■ labeled with the correct class y ∈ {+1,−1}.

Discriminant function f (x):

■ It assigns a real number to each
observation x, may be linear or
non-linear.

■ For 2 classes, 1 discriminant function
is enough.

■ It is used to create a decision rule
(which then assigns a class to an
observation):

f (x) > 0⇐⇒ ŷ = +1, and
f (x) < 0⇐⇒ ŷ = −1

i.e. ŷ = sign ( f (x)).

0.5 1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

1.5

x

f(
x
)

■ Decision boundary: {x| f (x) = 0}

■ Linear classification: the decision boundaries must be linear.

■ Learning then amounts to finding (suitable parameters of) function f .
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Let’s have the training dataset T = {(x(1), y(1)), . . . , (x(|T|), y(|T|)):

■ each example described by a vector x = (x1, . . . , xD),

■ labeled with the correct class y ∈ {1, . . . , K}.

Discriminant functions f1(x), . . . , fK(x):

■ They assign K real numbers to each
observation x, they may be linear or
non-linear.

■ Each function corresponds to a single
class.

■ They are used to create a decision
rule (which assigns a class to an
observation):

ŷ = arg max
k∈〈1,K〉

fk(x).
0 1 2 3 4 5
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)

■ Decision boundaries: {x| fi(x) = f j(x) ∧ ¬∃k : fk(x) > fi(x)}

■ Linear classification: the decision boundaries must be linear.

■ Learning then amounts to finding (suitable parameters of) functions fk .
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P. Pošı́k c© 2020 petr.posik@fel.cvut.cz Artificial Intelligence – 24 / 45

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Given a dataset of input vectors x(i) and their classes y(i) . . .

petr.posik@fel.cvut.cz


Naive approach: Illustration

Learning

Linear regression

Linear classification

• Quiz

• Binary class.

•Multi class.

• Naive idea

• Naive approach

Perceptron

Logistic regression

Optimal separating
hyperplane

Summary
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. . . we shall encode the class label as y = −1 and y = 1 . . .
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P. Pošı́k c© 2020 petr.posik@fel.cvut.cz Artificial Intelligence – 24 / 45

. . . and fit a linear discriminant function by minimizing MSE as in regression. The contour
line y = 0 . . .
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. . . then forms a linear decision boundary in the original 2D space.
But is such a classifier good in general?
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Problem: Learn a linear discriminant function f from data T.

Naive solution: fit linear regression model to the data!

■ Use cost function

JMSE(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − f (w, x(i))

)2
,

■ minimize it with respect to w,

■ and use ŷ = sign( f (x)).

■ Issue: Points far away from the decision boundary have huge effect on the model!

Better solution: fit a linear discriminant function which minimizes the number of errors!

■ Cost function:

J01(w, T) =
1

|T|

|T|

∑
i=1

I(y(i) 6= ŷ(i)),

where I is the indicator function: I(a) returns 1 iff a is True, 0 otherwise.

■ The cost function is non-smooth, contains plateaus, not easy to optimize, but there are
algorithms which attempt to solve it, e.g. perceptron, Kozinec’s algorithm, etc.
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Perceptron [Ros62]:

■ a simple model of a neuron

■ a linear classifier (in this case, a classifier with a linear discriminant function)

Algorithm 1: Perceptron algorithm

Input: Linearly separable training dataset: {x(i) , y(i)}, x(i) ∈ RD+1 (homogeneous coordinates),

y(i) ∈ {+1,−1}

Output: Weight vector w such that x(i)wT
> 0 iff y(i) = +1 and x(i)wT

< 0 iff y(i) = −1
1 begin
2 Initialize the weight vector, e.g. w = 0.

3 Invert all examples x belonging to class -1: x(i) = −x(i) for all i, where y(i) = −1.

4 Find an incorrectly classified training vector, i.e. find j such that x(j)wT ≤ 0, e.g. the worst

classified vector: x(j) = argmin
x(i)

(x(i)wT).

5 if all examples classified correctly then
6 Return the solution w. Terminate.
7 else

8 Update the weight vector: w = w + x(j) .

9 Go to 4.

Instead of using the worst classified point, the algorithm may go over the training set
(several times) and use all encountered wrongly classified points to update w.

[Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms. Spartan Books, Washington, D.C., 1962.
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Perceptron convergence theorem [Nov62]:

■ Perceptron algorithm eventually finds a hyperplane that separates 2 classes of points
in a finite number of steps, if such a hyperplane exists.

■ If no separating hyperplane exists, the algorithm does not converge and will iterate
forever.

Possible solutions:

■ Pocket algorithm — track the error the perceptron makes in each iteration and store
the best weights found so far in a separate memory (pocket).

■ Use a different learning algorithm, which finds an approximate solution, if the classes
are not linearly separable.

[Nov62] Albert B. J. Novikoff. On convergence proofs for perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata,
volume 12, Brooklyn, New York, 1962.
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The perceptron algorithm

■ finds a separating hyperplane, if it exists;

■ but if a single separating hyperplane exists, then there are infinitely many (equally
good?) separating hyperplanes.

■ and perceptron finds any of them!

Which separating hyperplane is the optimal one? What does “optimal” actually mean?
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Given a dataset of input vectors x(i) and their classes y(i) . . .
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. . . we shall encode the class label as y = 0 and y = 1 . . .

petr.posik@fel.cvut.cz


Logistic regression: Illustration

Learning

Linear regression

Linear classification

Perceptron

Logistic regression

• Illustration

•Model

• Cost function

Optimal separating
hyperplane

Summary
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. . . and fit a sigmoidal discriminant function with the threshold 0.5 . . .
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. . . which forms a linear decision boundary in the original 2D space.
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Problem: Learn a binary classifier for the dataset T = {(x(i), y(i))}, where y(i) ∈ {0, 1}.1

To reiterate: when using linear regression, the examples far from the decision boundary
have a huge impact on f . How to limit their influence?

Logistic regression uses a discriminant function which is a nonlinear transformation of
the values of a linear function

fw(x) = g(xwT) =
1

1 + e−xwT
,

where g(z) =
1

1 + e−z
is the sigmoid function (a.k.a logistic function).

Interpretation of the model:

■ fw(x) is interpretted as an estimate of the probability that x belongs to class 1.

■ The decision boundary is defined using a different level-set: {x : fw(x) = 0.5}.

■ Logistic regression is a classification model!

■ The discriminant function fw(x) itself is not linear anymore; but the decision boundary
is still linear!

■ Thanks to the sigmoidal transformation, logistic regression is much less influenced by
examples far from the decision boundary!

1Previously, we have used y(i) ∈ {−1,+1}, but the values can be chosen arbitrarily, and {0, 1} is convenient for
logistic regression.
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To train the logistic regression model, one can use the JMSE criterion:

J(w, T) =
1

|T|

|T|

∑
i=1

(
y(i) − fw(x(i))

)2
.

However, this results in a non-convex multimodal landscape which is hard to optimize.

Logistic regression uses a modified cost function
(sometimes called cross-entropy):

J(w, T) =
1

|T|

|T|

∑
i=1

cost(y(i), fw(x(i))), where

cost(y, ŷ) =

{
− log(ŷ) if y = 1

− log(1− ŷ) if y = 0
,

which can be rewritten in a single expression as

cost(y, ŷ) = −y · log(ŷ)−(1− y) · log(1− ŷ).

Such a cost function is simpler to optimize for numerical
solvers.
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Which of the above decision boundaries would you choose? (And why?)

A Green line

B Yellow line

C Red line

D Blue line
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Margin (cz:odstup):

■ “The width of the band in which the decision
boundary can move (in the direction of its
normal vector) without touching any data
point.”

Maximum margin linear classifier

xwT + w0 = 1
xwT + w0 = 0

xwT + w0 = −1

Plus 1 level: {x : xwT + w0 = 1}
Minus 1 level: {x : xwT + w0 = −1}
Decision boundary
(separating hyperplane): {x : xwT + w0 = 0}

Support vectors:

■ Data points x lying at the plus 1 level or
minus 1 level.

■ Only these points influence the decision
boundary!

Why we would like to maximize the margin?

■ Intuitively, it is safe.

■ If we make a small error in estimating the
boundary, the classification will likely stay
correct.

■ The model is invariant with respect to the
training set changes, except the changes of
support vectors.

■ There are sound theoretical results that
having a maximum margin classifier is good.

■ Maximal margin works well in practice.
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How to compute the margin M given w = (w1, . . . , wD), w0 of certain sep. hyperplane?

■ Let’s choose two points x+ and
x−, lying in the plus 1 level and
minus 1 level, respectively.

■ Let’s compute the margin M as
their distance.

xwT + w0 = 1

xwT + w0 = 0

xwT + w0 = −1
w

x+

x−

M

We know that:

x+wT + w0 = 1

x−wT + w0 = −1

x− + λw = x+

And we can derive:

(x+ − x−)wT = 2

(x− + λw− x−)wT = 2

λwwT = 2

λ =
2

wwT
=

2

‖w‖2

Thus the margin size is

M = ‖x+ − x−‖ = ‖λw‖ = λ‖w‖ =
2

‖w‖2
‖w‖ =

2

‖w‖
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We want to maximize margin M = 2
‖w‖

subject to the constraints ensuring correct

classification of the training set T. This optimization problem can be formulated as a
quadratic programming (QP) task.

■ Primary QP task:

minimize
1

2
wwT with respect to w0, . . . , wD

subject to y(i)(x(i)wT + w0) ≥ 1 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|

subject to αi ≥ 0

and
|T|

∑
i=1

αiy
(i) = 0.

■ From the solution of the dual task, we can compute the solution of the primal task:

w =
|T|

∑
i=1

αiy
(i)x(i), w0 = y(k) − x(k)wT ,

where (x(k), y(k)) is any support vector, i.e. αk > 0.
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Soft margin: Allows for incorrect classification of some data points.

Slack variables ξi : The shortest distances of data points to their “correct place”:

■ 0 for correctly classified data “outside the margin”,

■ positive for incorrectly classified data and data “inside the margin”.

ξi

ξ j

ξk

xwT + w0 = 1

xwT + w0 = 0

xwT + w0 = −1
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■ Primary QP task with slack variables:

minimize

(
1

2
wwT+C

|T|

∑
i=1

ξi

)
with respect to w0, . . . , wD , ξ1, . . . , ξ|T|

subject to y(i)(x(i)wT + w0) ≥ 1−ξi ∀i ∈ 1, . . . , |T|,

and ξi ≥ 0 ∀i ∈ 1, . . . , |T|.

■ Dual QP task:

maximize
|T|

∑
i=1

αi −
|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

with respect to α1, . . . , α|T|, µ1, . . . , µ|T|,

subject to αi ≥ 0, µi ≥ 0, αi + µi = C,

and
|T|

∑
i=1

αiy
(i) = 0.

■ Variables αi are more constrained than in the separable case, but the solution is the same:

w =
|T|

∑
i=1

αiy
(i)x(i), w0 = y(k) − x(k)wT ,

where (x(k), y(k)) is any support vector, i.e. αk > 0.
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Primary QP task:

(w∗, w∗0 , ξ∗) = arg min
w,w0 ,ξ

(
1

2
wwT + C

|T|

∑
i=1

ξi

)
with constraints ∀i, i = 1, . . . , |T|

y(i)(x(i)wT + w0)− 1 + ξi ≥ 0

ξi ≥ 0

Method of Lagrange multipliers

■ replaces the search for stationary points of function of D variables with K constraints by the search for
stationary points of unconstrained function of D + K variables;

■ creates a new variable — Langrange multiplier — for each constraint and defines a new function, Lan-
grangian, formed by the original function, constraints and multipliers.

L(w, w0, ξi , αi , µi) =
1

2
|w|2 + C

|T|

∑
i=1

ξi −
|T|

∑
i=1

αi{y
(i)(x(i)wT + w0)− 1 + ξi} −

|T|

∑
i=1

µiξi

where

■ αi ≥ 0 are Lagrange multipliers for constraints ensuring the correct classification of points, and

■ µi ≥ 0 are Lagrange multipliers for constraint on positivity of ξi .

The Lagrangian must be minimized w.r.t. the primary variables w, w0 and ξi and maximized w.r.t. the dual
variables αi and µi .
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The dual QP task is obtained when we take the Lagrangian

L(w, w0, ξi , αi , µi) =
1

2
|w|2 + C

|T|

∑
i=1

ξi −
|T|

∑
i=1

αi{y
(i)(x(i)wT + w0)− 1 + ξi} −

|T|

∑
i=1

µiξi

and we substitute for the primary variables w, w0 and ξi .

For a stationary point:

∂L

∂w
= w−

|T|

∑
i=1

αiy
(i)x(i) = 0 =⇒ w =

|T|

∑
i=1

αiy
(i)x(i)

∂L

∂w0
= −

|T|

∑
i=1

αiy
(i) = 0 =⇒

|T|

∑
i=1

αiy
(i) = 0

∂L

∂ξi
= C− αi − µi = 0 =⇒ C = αi + µi

After substituting back to L and simplification we get the criterion of the dual task:

LD =
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

+
|T|

∑
i=1

αiξi +
|T|

∑
i=1

µiξi −
N

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T

−
|T|

∑
i=1

αiy
(i)w0 +

|T|

∑
i=1

αi −
|T|

∑
i=1

αiξi −
|T|

∑
i=1

µiξi =
|T|

∑
i=1

αi −
1

2

|T|

∑
i=1

|T|

∑
j=1

αiαjy
(i)y(j)x(i)x(j)T
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Lagrangian

L(w, w0, ξi , αi , µi) =
1

2
|w|2 + C

|T|

∑
i=1

ξi −
|T|

∑
i=1

αi{y
(i)(x(i)wT + w0)− 1 + ξi} −

|T|

∑
i=1

µiξi

shall be minimized w.r.t. the primary variables w, w0 and ξi and maximized w.r.t. the dual variables αi and µi .

1. If a point x(i) lies on an incorrect side of plus- or minus-plane:

■ y(i)(x(i)wT + w0)− 1 < 0, then ξi > 0 so that y(i)(x(i)wT + w0)− 1 + ξi = 0

■ ξi > 0 and L must be maximized w.r.t. µi , so that µi must be as small as possible, i.e. µi = 0

■ C = αi + µi and µi = 0, so that αi = C

2. If a point x(i) lies on a correct side of plus- or minus-plane:

■ y(i)(x(i)wT + w0)− 1 > 0, so that ξi = 0

■ y(i)(x(i)wT + w0) − 1 + ξi > 0 and L must be maximized w.r.t. αi , so that αi must be as small as possible, i.e.
αi = 0

■ C = αi + µi and αi = 0, so that µi = C

3. If a point x(i) lies directly on plus- or minus-plane:

■ y(i)(x(i)wT + w0)− 1 = 0, so that ξi = 0

■ 0 < µi < C

■ 0 < αi < C
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The importance of dual formulation:

■ The QP task in dual formulation is easier to solve for QP solvers than the primal
formulation.

■ New, unseen examples can be classified using function

f (x, w, w0) = sign(xwT + w0) = sign

(
|T|

∑
i=1

αiy
(i)x(i)xT + w0

)
,

i.e. the discriminant function contains the examples x only in the form of dot
products (which will be useful later).

■ The examples with αi > 0 are support vectors, thus the sums may be carried out only
over the support vectors.

■ The dual formulation contains the data only in the form of dot products which allows
for other tricks you will learn later.

■ The primal task with soft margin has double the number of constraints, the task is
more complex, but

■ the results for the QP task with soft margin are of the same type as in the separable
case.
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After this lecture, a student shall be able to . . .

1. define the types of learning (supervised, unsupervised, semisupervised, reinforcement) and describe conceptual
differences between them;

2. define classification and regression types of problems, recognize them in practical situations;

3. describe 2 approaches to learning (as parameter estimation, as direct optimal strategy design) and give examples of
surrogate criteria used in them.

4. define and recognize linear regression model (with scalar parameters, in scalar product form, in matrix form,
non-homogenous and homogenous coordinates);

5. define the loss function suitable for fitting a regression model;

6. explain the least squares metod, draw an illustration;

7. compute coefficients of a simple (1D) linear regression by hand, write a computer program computing coefficients
for multiple regression;

8. explain the concept of discrimination function for binary and multinomial classification;

9. define a loss function suitable for fitting a classification model;

10. describe a perceptron algorithm, perform a few iterations by hand;

11. explain the characteristics of the perceptron algorithm;

12. describe logistic regression, the interpretation of its outputs, and why we classify it as a linear model;

13. define loss functions suitable for fitting logistic regression;

14. define optimal separating hyperplane, explain in what sense it is optimal;

15. define what a margin is, what support vectors are, and explain their relation;

16. compute the margin given the parameters of separating hyperplane for which min
i:y(i)=+1

(x(i)wT + w0) = 1 and

max
i:y(i)=−1

(x(i)wT + w0) = −1;

17. formulate the primary quadratic programming task which results in the optimal separating hyperplane (including
the soft-margin version);

18. compute the parameters of optimal hyperplane given the set of support vectors and their weights.
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