
Redundancy in Probability Computation

Consider P(b | j ,m) = αP(b)
∑

E P(E )
∑

A P(A | b,E )P(j | A)P(m | A).
Observe the repeated sub-summing (branches) in its computation:

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P( j|¬a) P( j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P( j|¬a)

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a|b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)
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Factors

This redundancy is removed by using factors, which are arrays storing
reusable computation results.

f (A) =

[
f (¬a)
f (a)

]
=

[
P(j | ¬a)P(m | ¬a)
P(j | a)P(m | a)

]
is an example factor.

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P( j|¬a) P( j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P( j|¬a)

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a|b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)

f(a) f(¬a)
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Computing Probabilities with Factors

Each query generates a set initial factors, one for each (conditional)
probability in its factorized expression. So P(B | j ,m) generates 5 initial
factors:

P(B | j ,m) = αP(B)︸ ︷︷ ︸
f1(B)

∑
E

P(E )︸ ︷︷ ︸
f2(E)

∑
A

P(A | B,E )︸ ︷︷ ︸
f3(A,B,E)

P(j | A)︸ ︷︷ ︸
f4(A)

P(m | A)︸ ︷︷ ︸
f5(A)

(1)

They have a dimension (argument) for each uninstantiated (upper-case)
variable and the values are given by the corresponding CPT entries. E.g.,

f4(A) =

[
P(j | ¬a)
P(j | a)

]
=

[
0.01
0.70

]
(2)

(Refer to the CPT shown here.)
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Computing Probabilities with Factors (cont’d)

We use the initial factors to express (1) as

P(B | j ,m) = αf1(B)×
∑
E

f2(E )×
∑
A

f3(A,B,E )× f4(A)× f5(A) (3)

where

× is factor multiplication producing a factor from two factors
(different from matrix multiplication!)∑

V is variable elimination producing a factor without the V
variable from a factor with the V variable

Using these two operations, we evaluate (3) from right to left.
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Factor Multiplication

Factors are multiplied point-wise (similar to a database join). Example:

f3(A,B,E )× f4(A) =

1.00 ¬a,¬b,¬e
0.71 ¬a,¬b,e
0.06 ¬a,b,¬e
0.05 ¬a,b,e
0.00 a,¬b,¬e
0.29 a,¬b,e
0.94 a,b,¬e
0.95 a,b,e


×
[

0.01 ¬a
0.70 a

]
=



1.00 · 0.01
0.71 · 0.01
0.06 · 0.01
0.05 · 0.01
0.00 · 0.70
0.29 · 0.70
0.94 · 0.70
0.95 · 0.70


Blue text indicates the array indexes.
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Factor Multiplication (cont’d)

For (3) , we proceed as follows

f6(A) = f4(A)× f5(A) =

[
0.01 ¬a
0.70 a

]
×
[

0.05 ¬a
0.90 a

]
=

[
0.0005 ¬a
0.63 a

]
(So f6 is the example factor f from here.)

f7(A,B,E ) = f3(A,B,E )× f6(A) =



1.00 ¬a,¬b,¬e
0.71 ¬a,¬b,e
0.06 ¬a,b,¬e
0.05 ¬a,b,e
0.00 a,¬b,¬e
0.29 a,¬b,e
0.94 a,b,¬e
0.95 a,b,e


×
[

0.0005 ¬a
0.63 a

]
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Variable Elimination

Now we have reduced (3) into

P(B | j ,m) = αf1(B)×
∑
E

f2(E )×
∑
A

f7(A,B,E )

where
∑

A f7(A,B,E ) produces a new factor f8(B,E ) defined as

f8(B,E ) =
∑
A

f7(A,B,E ) = f7(¬a,B,E ) + f7(a,B,E ) (4)

In general the operation
∑

V f (V , . . .) yielding a new factor without V is
called variable elimination.
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Computing Probabilities with Factors (cont’d)

Continue interleaving factor multiplication with variable elimination:

f9(B,E ) = f2(E )× f8(B,E )

f10(B) = f9(B, e) + f9(B,¬e)

f11(B) = f1(B)× f10(B)

Finally

P(B | j ,m) = αf11(B) (5)

where α = 1/(f11(¬b) + f11(b)).

Note that even with factors, complexity of inference in Bayes Networks is

obviously exponential: a factor with n variables has 2n values in it.

(Check out the first part of this exercise problem)
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MAP inference

We want to compute (??) without computing the probabilities of all
combinations of values of the unobserved variables. The joint MAP state
need not consist of the values maximizing their marginal probabilities!

Consider e.g.

A B
P(a)
0.6

P(b | A) A
0.90 0
0.55 1

arg max
A

P(A) = 1

but arg max
A,B

P(A,B) = (0, 1)
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MAP Inference (cont’d)

Principle similar to basic probability inference. Example:

Burglary Earthquake

Alarm

John calls Mary calls

First compute the maximum probability:

max
A,B

P(A,B | ¬e,¬j ,¬m) =

αmax
A,B

P(B)P(¬e)P(A | B,¬e)P(¬j | A)P(¬m | A) =

βmax
B

P(B) max
A

P(A | B,¬e)P(¬j | A)P(¬m | A)

where β = αP(¬e) need not be evaluated to compute the arg max.
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MAP Inference with Factors

Reformulate using factors:

max
A,B

P(A,B | ¬e,¬j ,¬m) = βmax
B

f1(B)×max
A

f2(A,B)× f3(A)× f4(A)

= βmax
B

f1(B)×max
A

f7(A,B) = βmax
B

f8(B) (6)

where maxV f (V , . . .) produces a new factor (without the V dimension)
containing the maximal values over the V dimension. This is called
maximizing out V .

The arguments (amax, bmax) maximizing (6) are determined as

bmax = arg maxB f8(B)

amax = arg maxA f7(A, bmax)

Note that the order of the two steps cannot be switched.
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MAP Involving Variable Elimination

Consider a case where query variables are not the full complement to
evidence variables as in here.

Say we want to find the most probable state of B and E when both J and
M are true and A is not observed. Now we have both maximization and
summation:

max
B,E

P(B,E | j ,m) = αmax
B,E

∑
A

P(B)P(E )P(A | B,E )P(j | A)P(m | A)

(7)

We still can push operators before the first occurrence of their arguments
but cannot swap the order of a max operator and a

∑
operator since∑

Y

max
X

P(X ,Y ) 6= max
X

∑
Y

P(X ,Y )
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MAP Involving Variable Elimination (cont’d)

So (7) rewrites to

αmax
B

f1(B)×max
E

f2(E )×
∑
A

f3(A,B,E )× f4(A)× f5(A) =

The scope of any max is everything to the right of it! Now multiply factors
after

∑
A and then eliminate A

αmax
B

f1(B)×max
E

f2(E )×
∑
A

f6(A,B,E ) = αmax
B

f1(B)×max
E

f2(E )× f7(B,E )

Multiply f2 with f7 and then maximize out E :

= αmax
B

f1(B)×max
E

f8(B,E ) = max
B

f9(B)

Finally, bmax = arg maxB f9(B), emax = arg maxE f8(bmax,E ).

(Check out the second part of this exercise problem)
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Learning a Bayes Network

We now assume that pk+1 is a Bayes Network with Bayes graph G and a
set w of parameters instantiating the conditional probability tables.

A usual way to learn pk+1 = (G ,w) from observations x≤k is to maximize
the likelihood, i.e. choose a model maximizing the probability of x≤k :

pk+1 = arg max
p=(G ,w)

p(x≤k)

We will only consider the scenario where G is given (i.e. is agent’s
background knowledge) and the agent only learns w.
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Estimation of CPT Parameters of a Bayes Network

CPT parameters can be estimated using the EM algorithm as in here,
except in Step ?? (M step), we estimate the conditional probabilities of
the CPT by maximizing the likelihood.

Example of the M step at k = 7 after missing data values have been
replaced by their expectations (E step) according to the current model:

Burglary Earthquake

Alarm

John calls Mary calls

P(a | B,E) B E

0 0
p(a | ¬b, e) 0 1

1 0
1 1

B E A J M
x1 0 1 1 0 0
x2 1 1 1 1 1
x3 0 1 1 1 0
x4 0 1 0 0 0
x5 1 0 0 0 0
x6 1 0 1 1 1

Here, p7(a | ¬b, e) := 2/3 (relative frequency maximizes likelihood.)
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Fast Estimation of CPT Parameters

The previous approach has high complexity due to:

1 iterating the EM steps until convergence

2 performing MAP inference for every missing value in each E iteration

3 the need to store all of x≤k in agent’s memory

(1) and (2) can be avoided by estimating the CPT probabilities only from
the subset of x≤k where the needed components are not missing.

pk will then converge slower to P in terms of k but may converge faster in
terms of runtime.
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Fast Estimation of CPT Parameters (cont’d)

For example, with observations

B E A J M

x1 0 1 0 0 0
x2 ? 1 1 1 1
x3 0 1 1 1 0
x4 0 1 ? ? 0
x5 1 0 0 0 ?
x6 0 1 0 1 1

estimate p6(a | ¬b, e) := 1/3.

Finally, (3) is also prevented: rather than remembering all of x≤k , update
the estimate by the cumulative moving average rule, only keeping the
count K of observations used so far for the estimate. Here:

p6(a | ¬b, e) = p5(a | ¬b, e) +
A6 − p5(a | ¬b, e)

K + 1
=

1

2
+

0− 1
2

3
= 1/3
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Temporal Bayesian Networks

Bayesian networks generalize some well known temporal models.

xk xk+1 Markov process (1st order)

xk xk+1 xk+2
Markov process (2nd order)

xk xk+1 xk+2

xk xk+1 xk+2

Markov hidden process (1st order, 3
observations)
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BN Encoding Logical Rules

Observe that Bayesian networks can encode propositional logic formulas.
Example:

Cold Flu Malaria

Fever

P(fever | C ,F ,M) C F M
1 1 1 1
0 all other cases

P(fever | C ,F ,M) C F M
0 0 0 0
1 all other cases

fever← cold ∧ flu ∧malaria fever← cold ∨ flu ∨malaria
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Statistical Relational Learning

Bayes networks extend propositional logic by enabling to express
probabilistic dependencies.

First-order logic (FOL) extends propositional logic by enabling to express
structural (relational) dependencies.

These aspects are combined in the formalism of Bayes Logic Programs
studied in the field called Statistical Relational Learning (SRL).

In SRL, also other probabilistic graphical models (e.g., Markov networks)
are endowed with FOL expressivness (Markov logic networks).
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