
Empirical Risk Minimization

When consistent learning is not possible, the best the agent can do is to
minimize the training error (??) , which is also called the empirical risk.

Notice the dilemma following from Theorem (??) . A larger H will

allow to achieve a smaller training error (we are choosing among more
hypotheses)

loosen the bound on the discrepancy (??) between error and the
training error

Given a training set T , the dilemma is usually solved empirically, e.g., by
cross-validating different H on T and then using the best H to learn from
T .
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Classification with Noise

Real-world concepts are often not “crisp” subsets of X as assumed by our
current assumption.

Consider a “soft” alternative assuming that x ∈ X belongs to class y ∈ Y
with probability P(y | x). An appropriate replacement for the prescription
(??) of the unit rewards (R = { 0, 1 }) is then (k ∈ N)

r1 = 0

rk+1 =

{
0 with probability P(yk+1 | xk)

−1 otherwise
(1)

Such rewards are probabilistic and we have already considered that. The
agent can resort to empirical risk minimization using a class H of “crisp”
hypotheses.
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Learning a Probability Distribution

But consider an alternative. Instead of learning a binary-policy hypothesis
hk from training set Tk (k > 1), learn from Tk an estimate pk of the
distribution P(x , y) and use the policy

yk = arg max
y∈Y

pk(y | xk−1) (2)

where pk(y | xk) = pk(xk , y)/pk(xk) and pk(xk) =
∑

y∈Y pk(xk , y).

This approach is appropriate for example when we do not know which
class H contains a low-error hypothesis but we know the class of
distributions (e.g., normal) containing P.

Being able to learn a distribution allows us to design agents for
agent-environment interactions beyond classification.
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Learning a Probability Distribution (cont’d)

For example, let V1,V2, . . . ,Vn be a set of discrete random variables
distributed by some P(V1,V2, . . . ,Vn). Let observations xk be sampled
from P but conveyed to the agent with missing values for some of the
variables, i.e. only some of the n values are given to the agent.

Given xk , the agent then predicts through yk+1 the most probable values
of the rest of the variables according to its current model, i.e., (k ∈ N)

yk+1 = arg max
{ x ik }i∈I

pk+1({ x ik }i∈I | { x
j
k }j∈J) (3)

where J (I , respectively) contains the indexes of the observed
(unobserved) variables.

Example: predicting occluded pixels given the surrounding pixels in images.
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Learning a Probability Distribution (cont’d)

Computing (2) or (3) is called maximum aposteriori probability (MAP)
inference. (2) can be viewed as a special case of (3) , in which the
argument of maximization is fixed to the class variable.

Conceptually, (2) and (3) are the same problem, requiring the agent to
learn a model of a joint distribution from samples from the distribution,
possibly with missing values.

More precisely, the agent receives observations in the following way. Let V
be a set of discrete random variables jointly distributed by P. Each
observation is sampled i.i.d from P and then an arbitrary subset of its
components is set to value ‘?’ (indicating ‘missing value’).

From such observations the agent should learn an estimate p of P, i.e., for
each k > 1, pk is estimated from x<k .
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Dimensionality Problem

The task can be accomplished with a variant of the EM algorithm. At
each k + 1 (k ∈ N), first set p := pk , and then loop over two steps

1 Fill in missing values: Estimate the most probable values of
unobserved components in all of x≤k by MAP inference using p,
yielding x̂≤k with no missing values.

2 Re-estimate p by relative frequencies: for each value tuple v of V set
p(v) := m/k where m is the number of times v occurs in x̂≤k .

until p converges. Then set pk+1 = p.

The problem with the relative-frequency estimate is that when the
dimension n grows linearly, to keep the accuracy of the estimate
unchanged, the number of samples k must grow exponentially.
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Independence to the Rescue

The dimensionality problem vanishes in the special case where the n
variables are pairwise independent, so P factorizes (i.e., is equal to a
product of smaller factors) as

P(V1,V2, . . . ,Vn) = P1(V1)P1(V2) . . .P1(Vn) (4)

Then instead of estimating P of dimension n, the agent estimates
P1,P2, . . .Pn, each of dimension 1. This is trivial: e.g. P(v) ≈ the proportion

of value v among all non-missing values x i≤k .

The problem with assumption (4) is that it is too strong making it
irrelevant to real-life machine learning problems.

However, a weaker form of independence can be defined and exploited.
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Conditional Independence

Conditional Independence

Let P be a joint probability distribution of a set of random variables V.
Let A,B ∈ V and E ⊆ V. We say that A and B are conditionally
independent given E (under P) if P(A,B | E) = P(A | E)P(B | E). We
denote this as A ⊥⊥P B | E .

We will drop the set delimiters {} in the conditional part when there is only one

variable in the condition, i.e. will we write A ⊥⊥P B | C rather than

A ⊥⊥P B | {C } to denote that A is conditionally independent of B given C .

It is obvious from the definition that A ⊥⊥P B | E implies

B ⊥⊥P A | E (i.e., ⊥⊥P is symmetric)

P(A|B, E) = P(A|E) (hint: use the chain rule)
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Example: Conditional Independence

Three random variables:

T outdoor temperature
I ice-cream sales
H heart-attack rate

I and H are not independent:

P(I ,H) 6= P(I )P(H)

but they are conditionally independent:

P(I ,H | T ) = P(I | T )P(H | T )
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Conditional Independence in Cause-Effect Graphs

Heart attack rate and ice-cream sales independent if temperature known:

T
I H P(I ,H | T ) = P(I | T )P(H | T )

Son and grandfather’s high IQ independent if same known for father:

F
G

S
P(S ,G | F ) = P(S | F )P(G | F )

In both cases: any vertex is conditionally independent of all of its
non-descendants given all its parents.

This principle motivates the framework of Bayesian networks, which are a
special case of probabilistic graphical models.
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Bayes Graph

Denote parG (V ) the set of all parents of vertex V in an oriented graph G .

Bayes Graph

A Bayes Graph for a set V of random variables is an acyclic directed
graph G with vertex set V. A Bayes G is correct for a distribution P on V
if ∀V ,V ′ ∈ V : V ⊥⊥P V ′ | parG (V ) whenever V ′ is not a descendant of V
in G .

(Exercise problem)

So a Bayes Graph is similar to cause-effect graphs but edges need not
correspond to cause-effect directions. A Bayes graph for P indicates pairs
of variables conditionally independent under P: a variable is conditionally
independent of all its non-descendants if exactly all its parents are given.

There may by multiple BG’s for one P.
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Example: Bayes Graph for Binary Variables (from AIMA)

Burglary Earthquake

Alarm

John calls Mary calls

From this Bayes graph, we can infer:

P(B,E ) = P(B)P(E )

P(J | X ,A) = P(J | A) for all of
X ∈ { B,E ,M }
P(M | X ,A) = P(M | A) for all of
X ∈ { B,E , J }

By the chain rule of probability

P(B,E ,A,M, J) = P(J | B,E ,A,M)P(M | B,E ,A)P(A | B,E )P(B,E )

but this simplifies using the inferred equalities:

P(B,E ,A, J,M) = P(J | A)P(M | A)P(A | B,E )P(B)P(E )

(See more in a tutorial.)
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Probability Factorization by a Bayes Graph

The following theorem is a general statement of the factorization shown in
the example. Its validity follows directly from the definition.

Theorem 1

Let G be a Bayes Graph correct for distribution P on variables
V1,V2, . . . ,Vn. Then

P(V1,V2, . . . ,Vn) =
n∏

i=1

P (Vi | parG (Vi )) (5)

Similarly to (4) , the Theorem enables to express a high-dimensional
distribution as a product of low-dimensional distributions provided that the
variables Vi ’s have a low number of parents in G . This assumption is more

realistic than pairwise independence.
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Conditional Probability Table

Let us abbreviate V = 1 (V = 0, respectively) as v (¬v) for any binary
random variable V .

To store an estimate of P(B,E ,A, J,M) from the example, we need an
array of size 25 = 32 to store a probability for each value combination of
the 5 variables. More precisely, we need to store only 31 parameters as the 32 of

them sum to 1.

To specify its factorization
P(J | A)P(M | A)P(A | B,E )P(B)P(E ),
we need a conditional probability table
(CPT) for each of the factors. E.g. for
P(A | B,E ) :

P(a | B,E ) E B

0.001 0 0
0.940 0 1
0.290 1 0
0.950 1 1

(Exercise problem)
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Bayes Network

Bayes Network

A Bayes Network for a distribution P on a set V of random variables
consists of a Bayes graph G for V, and a conditional probability table for
each V ∈ V containing a number from [0; 1] (i.e., a probability value) for
each assignment of values to random variables parG (V ).

The probabilities in the CPT of any V specify P(V | parG (V )). So due to
(5) , a BN fully specifies P.

There are in general multiple BN’s specifying the same P. More edges
mean more parameters.
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Bayes Network Example

Burglary Earthquake

Alarm

John calls Mary calls
P(m | A) A

0.05 0
0.90 1

P(j | A) A

0.01 0
0.70 1

P(a | B,E) B E

0.00 0 0
0.29 0 1
0.94 1 0
0.95 1 1

P(e)

0.02
P(b)

0.01

10 parameters, less than 31 in the full joint probability table.
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A Different Graph for the Same Example

Burglary Earthquake

Alarm

John calls Marry calls

P(m | B,E ,A) B E A
0.00 0 0 0
0.30 0 0 1
0.05 0 1 0
0.25 0 1 1

(. . . 4 more rows)

This Bayes graph does not imply any conditional independence. For each
vertex, all non-descendants are parents. Joint distribution calculated as

P(B,E ,A,M, J) = P(J | B,E ,A,M)P(M | B,E ,A)P(A | B,E )P(E | B)P(B)

CPT’s for the BN with this BG have 24 + 23 + 22 + 2 + 1 = 31
parameters, same as the full joint probability table.
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Computing Marginal Probabilities from a Bayes Network

So far we know how to compute the full joint distribution
from CPT’s:

P(B,E ,A, J,M) = P(J | A)P(M | A)P(A | B,E )P(B)P(E )

Burglary Earthquake

Alarm

John calls Mary calls

A straightforward way to compute marginals, e.g. P(A, J) is to sum out
the remaining variables. Think why it is good below to push the sums as
far right as possible! (implemented in a tutorial)

P(A, J) =
∑
B

∑
E

∑
M

P(J | A)P(M | A)P(A | B,E )P(B)P(E )

= P(J | A)
∑
M

P(M | A)
∑
B

∑
E

P(A | B,E )P(B)P(E )

B under a
∑

means summing over b and ¬b. Same for other variables.
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Computing Conditional Probabilities from a Bayes Network

Conditional probabilities are just fractions of marginals, e.g.

P(A, J | B,E ) =
P(A, J,B,E )

P(B,E )

(exercise problem)

Instead of calculating the denominator, we can evaluate the numerator for
all assignments to A, J and normalize, since

∑
A

∑
J P(A, J | B,E ) = 1.

α [P(¬a,¬j ,B,E ) + P(¬a, j ,B,E ) + P(a,¬j ,B,E ) + P(a, j ,B,E )] = 1

After computing the summands, we compute α = 1/P(B,E ) from the
equation above. Then we can get the conditional probability for any
〈A, J〉; e.g. for 〈¬a, j〉

P(¬a, j | B,E ) = α · P(¬a, j ,B,E )

Bayesian Networks 19 / 25

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.alarm-indep-and-comput


Evidence and Query Variables

In BN terminology, the variables whose joint conditional probability is
computed are called query variables; those in the condition part are
evidence variables.

Example query: probability that neither John nor Mary will call during a
burglary and no earthquake:

P(¬j ,¬m︸ ︷︷ ︸
query

| b,¬e︸ ︷︷ ︸
evidence

)

Burglary Earthquake

Alarm

John calls Mary calls

In (3) , the query variables include all unobserved variables and evidence
includes all observed variables. But BN’s enable more general queries:
query and evidence can be arbitrary subsets of all variables.
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Removing Irrelevant Variables

Consider
P(J | b) = αP(b)

∑
E P(E )

∑
A P(A | b,E )P(J,A)

∑
M P(M | A)∑

M P(M | A) = 1 so it can be left out, i.e. remove the corresponding
vertex from the BN.

Burglary Earthquake

Alarm

John calls Mary calls

⇒

Burglary Earthquake

Alarm

John calls

In general, any vertex that is not an ancestor to a query variable or
evidence variable of a query can be removed from the graph when
computing the query.
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d-Separation

Consider the Bayes Graph A B C D correct for some
P(A,B,C ,D).

Are A and D independent under P if B is observed? I.e., does G imply

A ⊥⊥P D | B ?

Yes, but this does not immediately follow from the definition because
parG (D) = {C } is not observed.

The d-separation criterion serves to decide all cases of independence
implied by a Bayes Graph.
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d-Separation (cont’d)

Given some evidence E , we say that variables A and B are d-separated in
the Bayes Graph G by E if on every undirected path between A and B in
G , there is

either a vertex V ∈ E such that the (directed) edges adjacent to V
on the path are

either diverging, i.e., V

or linear, i.e., V .

or a vertex V /∈ E such that D /∈ E also for all descendants D of V in
G , and the edges adjacent to V on the path are

converging, i.e., V .
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d-Separation (cont’d)

Theorem 2

Let G be a Bayes graph for a distribution P of a set V of random vars.
Let further A,B ∈ V and E ⊆ V. If A and B are d-separated in G by E
then A ⊥⊥P B | E .

Proof (not trivial) can be found in Verma & Pearl, 1998.

(exercise problem)

D-separation can be checked by an efficient algorithm that does not
enumerate all paths between the inspected pair of nodes.
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Checking d-Separation

To determine if A and B are d-separated in G by E ,

1 Extract from G the ancestral graph Ganc by keeping only vertices in
{A,B } ∪ E and all their ancestors (edges between kept vertices are
kept.)

2 Moralize Ganc by putting an undirected edge between
(i.e.,“marrying”) each pair of parents of any vertex; then replace in
Ganc all directed edges by an undirected edge.

3 Delete from Ganc all vertices from E along with their edges.

A and B are d-separated in G by E iff A and B are not connected in the
resulting graph.

(Implemented in a tutorial).
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