
Proper PAC-Learning

We have shown s-term DNF (s-clause CNF, respectively) to be
learnable online from X = { 0, 1 }n because it is a subset of the class
s-CNF (s-DNF) which is learnable (by a standard agent) from X .

So by Theorem (??) , the two classes are also PAC-Learnable from X ,
which means that the agent finds a hypothesis hK such that err(hK) < ε
with probability at least 1− δ where K ≤ poly(1ε ,

1
δ , nX).

hK is a s-CNF (s-DNF) and generally, it cannot be rewritten into an
equivalent s-term DNF (s-clause CNF).

We will define a stronger version of PAC-learning which requires that hK
belongs to the hypothesis class from which the target hypothesis is chosen.

Concept Learning 1 / 19

Proper PAC-Learning

Proper PAC Learning Model

Let H be a hypothesis class. An agent (efficiently) properly PAC-learns
H from an observation class X if all conditions for (efficient) PAC-learning
of C(H) are satisfied, and, in addition, for the hK in the definition it holds
hK ∈ H. A hypothesis class H is (efficiently) properly PAC-learnable
from X if there is an agent (efficiently) properly PAC-learning H from X .

Proper PAC-learning is important e.g. when hK is to be interpreted by a
human and its membership in H guarantees readability.

Concept Learning 2 / 19

Efficiently Properly PAC-Learnable Classes

Given Theorem (??) , a hypothesis class H is efficiently properly
PAC-learnable from X if there is a standard agent that efficiently learns H
online from X and the hypotheses hk the agent uses as decision policies
are all from H.

For example, conjunctions (clauses, respectively) are efficiently properly
PAC-learnable from X = { 0, 1 }n or from X = contingent conjunctions
(clauses) because they are learnable online efficiently with the
generalization algorithm, and all hk are conjunctions (clauses). (Unlike

Winnow, where hk are hyperplanes!)

Concept Learning 3 / 19

(Non)-Learnability of s-term DNF and s-clause CNF

We already know that s-term DNF is efficiently learnable online from
X = { 0, 1 }n by a standard agent thus also efficiently PAC-learnable from
X . It is also properly PAC-learnable from X due to Theorem (??) and the
fact that lg |s-CNF| ≤ poly(n) and C(s-term DNF) ⊆ C(s-CNF).

The same holds analogically for s-clause CNF. Are these classes also
efficienty properly learnable?

Theorem 1

None of s-term DNF and s-clause CNF is efficiently properly
PAC-learnable from X = { 0, 1 }n

Proof: We will show the proof only for the special case of 3-term DNF.
The NP-complete graph 3-coloring problem can be reduced in poly-time to finding
an 3-term DNF consistent with a finite set of observations.

Concept Learning 4 / 19

https://en.wikipedia.org/wiki/Graph_coloring

3-term DNF’s are not efficiently properly PAC-learnable.

vertex vi ↔ pos. example x , x l =

{
0 if l = i

1 otherwise

edge eij ↔ neg. example x , x l =

{
0 if l = i or l = j

1 otherwise

v1 v2

v3

v4 v5

01111 10111

11011

11101 11110

00111

01011

01101

10011

10110

11001 11010

11100

Concept Learning 5 / 19

3-term DNF’s are not efficiently properly PAC-learnable.

Graph 3-colorable iff a 3-term DNF consistent with the observations.

01111 10111

11011

11101 11110

00111

01011

01101

10011

10110

11001 11010

11100

⇒∨
color ∈
{ R,G ,Y }

∧
vi not of
color

pi

⇐
color of any consistent term

p2 ∧ p3 ∧ p4∨
p1 ∧ p3 ∧ p5∨

p1 ∧ p2 ∧ p4 ∧ p5

3-colorability NP-hard → finding a consistent 3-term DNF NP-hard.

Concept Learning 6 / 19

s-Decision Trees

Example:

p3

p5 1

1 0

0 1

0 1

3-Decision Tree

A decision tree on X = { 0, 1 }n is a binary tree
graph where each non-leaf vertex indicates one
of the n components, each leaf is a class from
Y , and each edge is labeled 0 or 1.
It prescribes a policy for x ∈ X : go from the
root, always following one of the two outgoing
edges that is labeled with the value of the
component in the last vertex, until in a leaf.
The leaf is the decision.
For example, x = (0, 1, 0, 1, 1) is decided as
y = 0 by the tree on the left.
An s-decision tree has depth s or less.

Concept Learning 7 / 19

PAC-Learnability of s-Decision Trees

Theorem 2

The class s-Decision trees is PAC-learnable from X = { 0, 1 }n efficiently or
properly but not efficiently properly.

Proof: For any s-DT, there is an equivalent s-DNF: create an
s-conjunction for each tree’s path from the root to a “1” leaf. E.g.
this tree corresponds to the 3-DNF p3 ∨ (¬p3 ∧ ¬p5). So

C(s-DT) ⊆ C(s-DNF) (1)

s-DNF is efficently learnable online by a standard agent and thus also
efficiently PAC-learnable. So the agent can efficiently PAC-learn s-DT
using s-DNF. Thus s-DT is efficiently PAC-learnable.

Concept Learning 8 / 19

PAC-Learnability of s-Decision Trees (cont’d)

s-DT is also properly PAC-learnable by a s-DT-consistent agent according
to Theorem (??) due to lg |s-DT| ≤ poly(nX) where nX = n. Indeed,
|1-DT| = 2 because there are exactly two options { 0, 1 } for the single
vertex (leaf) of it. So

lg |1-DT| = lg 2 = 1 (2)

For s > 1, |(s + 1)-DT| = n|s-DT|2 (n options for the vertex and |s-DT|
options for each of the two subtrees). Take the logarithm of the equation:

lg |(s + 1)-DT| = lg n + 2 lg |s-DT| (3)

(2) and (3) form a recursive prescription of a geometric series whose
solution is lg |s-DT| = (2s − 1)(1 + lg n) + 1 ≤ poly(n).

Concept Learning 9 / 19

PAC-Learnability of s-Decision Trees (cont’d)

Finally, finding an s-tree consistent with a finite set of observations is an
NP-complete problem. We omit the part of the proof showing this but
refer to the analogical proof for s-term DNF following Theorem (1) .

Thus the class s-DT is not efficiently properly PAC-Learnable, which
completes the proof.

Note: similarly to (1) , we also have

C(s-DT) ⊆ C(s-CNF) (4)

Given an s-DT, one creates a clause for each path from root to a “0” leaf,
e.g. this tree corresponds to the single-clause 3-CNF p3 ∨ ¬p5.

Concept Learning 10 / 19

s-Decision Lists

Example:

c y

p1 ∧ ¬p3 0
p2 1
¬p1 1
∅ 0

2-Decision list

An s-Decision list on X = { 0, 1 }n is a list
of pairs (c , y) where c is an s-conjunction
using variables from p1, p2, . . . ,pn and
y ∈ Y .
The last conjunction in the list is empty and
the corresponding y is called the default
class.
It classifies an x ∈ X into class yi where
(ci , yi) is the first pair in the list such that
x |= ci .
For example, x = (1, 1, 1) is classified into 1
by the decision list on the left.

Concept Learning 11 / 19

PAC-Learnability of s-Decision Lists

Theorem 3

The class s-Decision lists is efficiently properly PAC-learnable from
X = { 0, 1 }n.

We will present an s-DL-consistent algorithm known as the covering
algorithm for efficient finding of an s-DL hypothesis hk+1 consistent with
x≤k .

Let Tk+1 = { (x1, y1), (x2, y2), . . . , (xk , yk) } where y i (1 ≤ i ≤ k) is the
true class of xi . Tk+1 is called a training set (at time k + 1).

Note that the agent knows all elements of Tk+1 because it has seen all of
the xi and the y i can be determined as y i = |yi + ri+1|.

Concept Learning 12 / 19

Finding a Consistent s-Decision List

Require: training set T
1: L := [] (empty list)
2: while T 6= ∅ do
3: c = any s-conjunction true for some positive and no negative

example in T , or some negative and no positive example in T
(respectively)

4: Remove samples covered by c : T := T \ { (x , y) ∈ T : x | = c }
5: if T = ∅ then
6: append (∅, 1) or (∅, 0) (respectively) to L.
7: else
8: append (c , 1) or (c , 0) (respectively) to L
9: end if

10: end while

Concept Learning 13 / 19

PAC-Learnability of s-Decision Lists (cont’d)

|s-DL| = 3|s-conjunctions|!

because each s-conjunction can be absent from the list, present with
y = 0 or present with y = 1 (hence the base 3), and they can be arranged
in an arbitrary order (hence the factorial).

We know that |s-conjunctions| ≤ poly(n). So we have

lg |s-DL| < poly(n)

So by Theorem (??) , the s-DL-consistent covering algorithm PAC-learns
s-DL. Since it is efficient and the output is an s-DL, it does so efficiently
and properly, which finishes the proof.

Concept Learning 14 / 19

s-Decision Lists (cont’d)

Every s-DNF has an equivalent s-DL constructed as follows

for each s-conjunction c from the s-DNF, add (c , 1) to the s-DL

add (∅, 0) to the s-DL

so
C(s-DNF) ⊂ C(s-DL)

s-DL is closed under negation, i.e., for any h ∈ s-DL, also ¬h ∈ s-DL (just
flip the zeros and ones for all the yi in h). Each s-CNF is the negation of
some s-DNF. Therefore also

C(s-CNF) ⊂ C(s-DL)

Concept Learning 15 / 19

Hierarchy of Size-Bounded Propositional Classes

efficiently properly PAC-learnable efficiently or properly PAC-learnable

s-DL

s-CNF s-DNF

s-DTs-term DNF s-clause CNF

s-conjunctions s-clauses

Concept Learning 16 / 19

Inconsistent Learning

Consistent learning may not be possible when (??) does not hold or when
rewards rk+1 are not deterministic as in (??) but depend only
probabilistically on xk and yk+1. The latter case corresponds to learning from

“noisy data.”

Define the training error êrr(hk+1) (k ∈ N) of hypothesis hk+1 as

êrr(hk+1) =
1

k

k∑
i=1

|hk+1(xi)− y i | (5)

where y i is the true class of xi . So êrr(hk+1) is the proportion of
observations from x≤k that hk+1 is not consistent with.

Note that êrr(hk+1) is in general not equal to 1
k

∑k
i=1 |ri | since actions yi ,

1 ≤ i ≤ k were decided by hypotheses other than hk+1.

Concept Learning 17 / 19

Inconsistent Learning (cont’d)

The following lemma a direct consequence of the well-known
Hoeffding inequality.

Lemma 1

Let { z1, z2, . . . , zm } be a set of i.i.d. samples from P(z) on { 0, 1 }. Then
the probability that

∣∣P(1)− 1
m

∑m
i=1 zi

∣∣ > ε is at most 2e−2ε
2m.

Theorem 4

Let hk+1 ∈ H (∀k ∈ N) where H is a hypothesis class. With probability at
least 1− δ

|err(hk+1)− êrr(hk+1)| ≤
√

1

2k
ln

2|H|
δ

(6)

Concept Learning 18 / 19

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

Inconsistent Learning (cont’d)

Proof of Theorem (6) : by assumption, x1, x2, . . . , xk , are i.i.d. from (??) ,
thus for a given hk+1 ∈ H,

|hk+1(x1)− y1|, |hk+1(x1)− y2|, . . . |hk+1(xk)− yk |

where y i are the true classes of x1 is an i.i.d. sample from a P(.) on
{ 0, 1 } where P(1) = err(hk+1). Thus given (5) and Lemma (1) , the
probability that

|err(hk+1)− êrr(hk+1)| > ε

is at most 2e−2ε
2k . The probability that the above is true for some

hk+1 ∈ H is thus at most |H|2e−2ε2k . Setting |H|2e−2ε2k = δ yields

ε =

√
1

2k
ln

2|H|
δ

which completes the proof.

Concept Learning 19 / 19

	Introduction
	Concept Learning

