We have shown <u>s-term DNF</u> (s-clause CNF, respectively) to be <u>learnable online</u> from $X = \{0, 1\}^n$ because it is a subset of the class s-CNF (s-DNF) which is learnable (by a standard agent) from X.

So by Theorem (77), the two classes are also <u>PAC-Learnable</u> from X, which means that the agent finds a hypothesis h_K such that $\operatorname{err}(h_K) < \epsilon$ with probability at least $1 - \delta$ where $K \leq \operatorname{poly}(\frac{1}{\epsilon}, \frac{1}{\delta}, n_X)$.

 h_K is a s-CNF (s-DNF) and generally, it cannot be rewritten into an equivalent s-term DNF (s-clause CNF).

We will define a stronger version of PAC-learning which requires that h_K belongs to the hypothesis class from which the target hypothesis is chosen.

Proper PAC Learning Model

Let \mathcal{H} be a <u>hypothesis class</u>. An agent (efficiently) **properly PAC-learns** \mathcal{H} from an observation class X if all conditions for (efficient) PAC-learning of $\mathcal{C}(\mathcal{H})$ are satisfied, and, in addition, for the h_K in the <u>definition</u> it holds $h_K \in \mathcal{H}$. A hypothesis class \mathcal{H} is (efficiently) **properly PAC-learnable** from X if there is an agent (efficiently) properly PAC-learning \mathcal{H} from X.

Proper PAC-learning is important e.g. when $h_{\mathcal{K}}$ is to be interpreted by a human and its membership in \mathcal{H} guarantees readability.

Given Theorem (77), a hypothesis class \mathcal{H} is efficiently properly PAC-learnable from X if there is a standard agent that efficiently learns \mathcal{H} online from X and the hypotheses h_k the agent uses as decision policies are all from \mathcal{H} .

For example, *conjunctions* (*clauses*, respectively) are efficiently properly PAC-learnable from $X = \{0, 1\}^n$ or from X = contingent conjunctions (clauses) because they are <u>learnable online</u> efficiently with the generalization algorithm, and all h_k are conjunctions (clauses). (Unlike <u>Winnow</u>, where h_k are hyperplanes!)

(Non)-Learnability of s-term DNF and s-clause CNF

We already know that *s*-term DNF is <u>efficiently</u> learnable online from $X = \{0,1\}^n$ by a <u>standard agent</u> thus <u>also</u> <u>efficiently</u> PAC-learnable from X. It is also <u>properly</u> PAC-learnable from X due to Theorem (??) and the fact that $\lg |s-CNF| \le poly(n)$ and $C(s-\text{term DNF}) \subseteq C(s-\text{CNF})$.

The same holds analogically for *s*-clause CNF. Are these classes also *efficienty properly* learnable?

Theorem 1

None of s-term DNF and s-clause CNF is efficiently properly PAC-learnable from $X = \{0, 1\}^n$

Proof: We will show the proof only for the special case of 3-term DNF. The NP-complete graph 3-coloring problem can be reduced in poly-time to finding an 3-term DNF consistent with a finite set of observations.

3-term DNF's are not efficiently properly PAC-learnable.

3-term DNF's are not efficiently properly PAC-learnable.

Graph 3-colorable iff a 3-term DNF consistent with the observations.

3-colorability NP-hard \rightarrow finding a consistent 3-term DNF NP-hard.

s-Decision Trees

Example:

3-Decision Tree

A decision tree on $X = \{0,1\}^n$ is a binary tree graph where each non-leaf vertex indicates one of the *n* components, each leaf is a class from *Y*, and each edge is labeled 0 or 1. It prescribes a policy for $x \in X$: go from the root, always following one of the two outgoing edges that is labeled with the value of the component in the last vertex, until in a leaf. The leaf is the decision.

For example, x = (0, 1, 0, 1, 1) is decided as y = 0 by the tree on the left.

An *s*-decision tree has *depth s* or less.

Theorem 2

The class s-Decision trees is PAC-learnable from $X = \{0, 1\}^n$ efficiently or properly but not efficiently properly.

Proof: For any *s*-DT, there is an equivalent <u>*s*-DNF</u>: create an <u>*s*-conjunction</u> for each tree's path from the root to a "1" leaf. E.g. <u>this tree</u> corresponds to the 3-DNF $p_3 \vee (\neg p_3 \land \neg p_5)$. So

$$\mathcal{C}(s\text{-}\mathsf{DT}) \subseteq \mathcal{C}(s\text{-}\mathsf{DNF}) \tag{1}$$

s-DNF is efficiently <u>learnable online</u> by a <u>standard agent</u> and thus <u>also</u> efficiently PAC-learnable. So the agent can efficiently PAC-learn *s*-DT using *s*-DNF. Thus *s*-DT is *efficiently* PAC-learnable.

s-DT is also *properly* PAC-learnable by a <u>*s*-DT-consistent agent</u> according to Theorem (17) due to $\lg |s-DT| \leq poly(n_X)$ where $n_X = n$. Indeed, |1-DT| = 2 because there are exactly two options $\{0,1\}$ for the single vertex (leaf) of it. So

$$|g|1-DT| = |g2 = 1$$
(2)

For s > 1, $|(s + 1)-DT| = n|s-DT|^2$ (*n* options for the vertex and |s-DT| options for each of the two subtrees). Take the logarithm of the equation:

$$\lg |(s+1)-\mathsf{DT}| = \lg n + 2\lg |s-\mathsf{DT}| \tag{3}$$

(2) and (3) form a recursive prescription of a geometric series whose solution is $\lg |s-DT| = (2^s - 1)(1 + \lg n) + 1 \le poly(n)$.

Finally, finding an *s*-tree consistent with a finite set of observations is an NP-complete problem. We omit the part of the proof showing this but refer to the analogical proof for *s*-term DNF following Theorem (1).

Thus the class s-DT is not efficiently properly PAC-Learnable, which completes the proof.

Note: similarly to (1), we also have

$$\underline{\mathcal{C}(s\text{-}\mathsf{DT})} \subseteq \underline{\mathcal{C}(s\text{-}\mathsf{CNF})} \tag{4}$$

Given an s-DT, one creates a clause for each path from root to a "0" leaf, e.g. this tree corresponds to the single-clause 3-CNF $\mathrm{p}_3 \vee \neg \mathrm{p}_5.$

Example:

С	y
$\mathrm{p}_1 \wedge \neg \mathrm{p}_3$	0
\mathbf{p}_2	1
$\neg p_1$	1
Ø	0

2-Decision list

An *s*-Decision list on $X = \{0,1\}^n$ is a list of pairs (c, y) where *c* is an *s*-conjunction using variables from p_1, p_2, \dots, p_n and $y \in Y$.

The last conjunction in the list is empty and the corresponding *y* is called the *default class*.

It classifies an $x \in X$ into class y_i where (c_i, y_i) is the first pair in the list such that $x \models c_i$.

For example, x = (1, 1, 1) is classified into 1 by the decision list on the left.

Theorem 3

The class s-Decision lists is efficiently properly PAC-learnable from $X = \{0, 1\}^n$.

We will present an <u>s-DL-consistent algorithm</u> known as the <u>covering</u> algorithm for efficient finding of an s-DL hypothesis h_{k+1} consistent with $x_{\leq k}$.

Let $T_{k+1} = \{ (x_1, \overline{y}_1), (x_2, \overline{y}_2), \dots, (x_k, \overline{y}_k) \}$ where $\overline{y}_i (1 \le i \le k)$ is the true class of x_i . T_{k+1} is called a **training set** (at time k + 1).

Note that the agent knows all elements of T_{k+1} because it has seen all of the x_i and the \overline{y}_i can be determined as $\overline{y}_i = |y_i + r_{i+1}|$.

Require: training set T

- 1: L := [] (empty list)
- 2: while $T \neq \emptyset$ do
- 3: c = any s-conjunction true for some positive and no negative example in T, or some negative and no positive example in T(respectively)
- 4: Remove samples covered by $c: T := T \setminus \{ (x, \overline{y}) \in T : x \mid = c \}$
- 5: **if** $T = \emptyset$ **then**
- 6: append $(\emptyset, 1)$ or $(\emptyset, 0)$ (*respectively*) to *L*.
- 7: **else**
- 8: append (c, 1) or (c, 0) (*respectively*) to L
- 9: end if
- 10: end while

 $|s-DL| = 3^{|s-conjunctions|}!$

because each *s*-conjunction can be absent from the list, present with y = 0 or present with y = 1 (hence the base 3), and they can be arranged in an arbitrary order (hence the factorial).

We know that |s-conjunctions $| \le poly(n)$. So we have

|g|s-DL| < poly(n)

So by Theorem (77), the *s*-DL-consistent covering algorithm PAC-learns *s*-DL. Since it is efficient and the output is an *s*-DL, it does so efficiently and properly, which finishes the proof.

Every <u>s-DNF</u> has an equivalent <u>s-DL</u> constructed as follows

for each <u>s-conjunction</u> c from the s-DNF, add (c, 1) to the <u>s-DL</u>
add (∅, 0) to the <u>s-DL</u>

SO

$$\mathcal{C}(s\text{-}\mathsf{DNF}) \subset \mathcal{C}(s\text{-}\mathsf{DL})$$

s-DL is closed under negation, i.e., for any $h \in s$ -DL, also $\neg h \in s$ -DL (just flip the zeros and ones for all the y_i in h). Each *s*-CNF is the negation of some *s*-DNF. Therefore also

$$\mathcal{C}(s\text{-}\mathsf{CNF}) \subset \mathcal{C}(s\text{-}\mathsf{DL})$$

Hierarchy of Size-Bounded Propositional Classes

efficiently properly PAC-learnable

efficiently or properly PAC-learnable

Consistent learning may not be possible when (??) does not hold or when rewards r_{k+1} are not deterministic as in (??) but depend only probabilistically on x_k and y_{k+1} . The latter case corresponds to learning from "noisy data."

Define the training error $\widehat{\operatorname{err}}(h_{k+1})$ $(k \in \mathbb{N})$ of hypothesis h_{k+1} as

$$\widehat{\operatorname{err}}(h_{k+1}) = \frac{1}{k} \sum_{i=1}^{k} |h_{k+1}(x_i) - \overline{y}_i|$$
(5)

where \overline{y}_i is the true class of x_i . So $\widehat{\operatorname{err}}(h_{k+1})$ is the proportion of observations from $x_{\leq k}$ that h_{k+1} is not consistent with.

Note that $\widehat{\operatorname{err}}(h_{k+1})$ is in general not equal to $\frac{1}{k}\sum_{i=1}^{k}|r_i|$ since actions y_i , $1 \leq i \leq k$ were decided by hypotheses other than h_{k+1} .

The following lemma a direct consequence of the well-known Hoeffding inequality.

Lemma 1

Let $\{z_1, z_2, \ldots, z_m\}$ be a set of *i.i.d.* samples from P(z) on $\{0, 1\}$. Then the probability that $|P(1) - \frac{1}{m} \sum_{i=1}^{m} z_i| > \epsilon$ is at most $2e^{-2\epsilon^2 m}$.

Theorem 4

Let $h_{k+1} \in \mathcal{H}$ ($\forall k \in \mathbb{N}$) where \mathcal{H} is a <u>hypothesis class</u>. With probability at least $1 - \delta$

$$|\operatorname{err}(h_{k+1}) - \widehat{\operatorname{err}}(h_{k+1})| \leq \sqrt{rac{1}{2k} \ln rac{2|\mathcal{H}|}{\delta}}$$

(6)

Inconsistent Learning (cont'd)

Proof of Theorem (6): by assumption, x_1, x_2, \ldots, x_k , are i.i.d. from (77), thus for a given $h_{k+1} \in \mathcal{H}$,

$$|h_{k+1}(x_1)-\overline{y}_1|, |h_{k+1}(x_1)-\overline{y}_2|, \dots |h_{k+1}(x_k)-\overline{y}_k|$$

where \overline{y}_i are the true classes of x_1 is an i.i.d. sample from a P(.) on $\{0,1\}$ where $P(1) = err(h_{k+1})$. Thus given (5) and Lemma (1), the probability that

$$|\operatorname{err}(h_{k+1}) - \widehat{\operatorname{err}}(h_{k+1})| > \epsilon$$

is at most $2e^{-2\epsilon^2 k}$. The probability that the above is true for *some* $h_{k+1} \in \mathcal{H}$ is thus at most $|\mathcal{H}| 2e^{-2\epsilon^2 k}$. Setting $|\mathcal{H}| 2e^{-2\epsilon^2 k} = \delta$ yields

$$\epsilon = \sqrt{\frac{1}{2k} \ln \frac{2|\mathcal{H}|}{\delta}}$$

which completes the proof.

