
Winnow: Mistake Bound

Theorem 1

Let the target hypothesis be a monotone disjunction on X = { 0, 1 }n and
s be the number of atoms in it. Winnow makes at most 2 + 2s lg n
mistakes, i.e.,

∞∑
k=1

|rk | ≤ 2 + 2s lg n (1)

As s ≤ n, we have
∑∞

k=1 |rk | ≤ poly(n), and thus Winnow learns
monotone disjunctions online. It also learns them efficiently (easy to
check). The lg n term makes Winnow a fast learner (compared e.g. to the
perceptron) when the number of atoms s in the target disjuction is small
(s � n).

To prove the theorem, we first show two lemmas.

Concept Learning 1 / 19

https://en.wikipedia.org/wiki/Perceptron

Winnow: Mistake Bound (cont’d)

Lemma 1

If xk (k ∈ N) is a false negative then
∑n

i=1 h
i
k+1 −

∑n
i=1 h

i
k ≤

n
2

Proof of Lemma 1: hk(xk) = 0 since xk is a false negative, and by (??) ,
n∑

i=1

hikx
i
k ≤

n

2
(2)

Furthermore,
n∑

i=1

hik+1 −
n∑

i=1

hik =
n∑

i=1

(hik+1 − hik) =
n∑

i=1

(hik+1 − hik)x ik (3)

where the last equality is because for any i such that x ik = 0, hik+1 = hik
due to the Winnow learning rule.

Concept Learning 2 / 19

Winnow: Mistake Bound (cont’d)

Due to (??) ,

n∑
i=1

(hik+1 − hik)x ik =
n∑

i=1

(2hik − hik)x ik =
n∑

i=1

hikx
i
k

Therefore
n∑

i=1

hik+1 −
n∑

i=1

hik =
n∑

i=1

hikx
i
k ≤

n

2

where the inequality is given by (2) . This proves the lemma.

Concept Learning 3 / 19

Winnow: Mistake Bound (cont’d)

Lemma 2

If xk (k ∈ N) is a false positive then
∑n

i=1 h
i
k −

∑n
i=1 h

i
k+1 >

n
2

Proof of Lemma 2: hk(xk) = 1 since xk is a false positive, and by (??) ,
n∑

i=1

hikx
i
k >

n

2
(4)

The lemma is proven by the equation below, where the first equality is due
to the Winnow learning rule as in (3) , the second equality due to the

same rule prescribing hik+1 = 0 for each i such that x ik = 1, and the last
inequality is from (4) :

n∑
i=1

hik −
n∑

i=1

hik+1 =
n∑

i=1

(hik − hik+1)x ik =
n∑

i=1

hikx
i
k >

n

2

Concept Learning 4 / 19

Winnow: Mistake Bound (cont’d)

Lemma 3

For ∀k ∈ N, i ∈ [1; n] : hik ≤ n

Proof of Lemma 3: From (??) hi1 = 1. For contradiction, assume the
lemma is not true and k + 1 (k ∈ N) is the smallest index for which
hik+1 > n. Since hik ≤ n, hk was promoted to hk+1 by (??) , implying

x ik = 1 (otherwise hik would not have been promoted) and hik > n/2
(promotion doubles the value). But then

∑n
i=1 x

ihik > n/2 so by (??) ,
yk+1 = hk(xk) = 1 so hik was not promoted. This contradiction proves the
lemma.

Concept Learning 5 / 19

Winnow: Mistake Bound (cont’d)

Proof of Theorem 1: Let FNk (FPk, respectively) be the number of false
negatives (false positives) up to time k so FNk + FPk is the total number
of mistakes up to k . From (??) , we have

n∑
i=1

hi1 = n

From this and Lemmas (1) and (2) we have

n∑
i=1

hik ≤ n +
n

2
FNk −

n

2
FPk (5)

Furthermore, since hi1 = 1 and any decrease is only through elimination,
which zeros the component, we have for ∀k ∈ N, i ∈ [1; n]

hik ≥ 0 (6)

Concept Learning 6 / 19

Winnow: Mistake Bound (cont’d)

From (5) and (6) , it holds for ∀k ∈ N:

0 ≤
n∑

i=1

hik ≤ n +
n

2
FNk −

n

2
FPk

implying
n

2
FPk ≤ n +

n

2
FNk

and since n > 0, we can multiply this by 2
n , obtaining

FPk ≤ 2 + FNk (7)

Concept Learning 7 / 19

Winnow: Mistake Bound (cont’d)

Each promotion doubles hi where i is one of the s indexes corresponding
to the s atoms in the target disjunction. First assume s > 0. So after FNk

promotions, at least one of them was doubled FNk
s times or more, thus for

∀k ∈ N, ∃i ∈ [1; n]: hik ≥ 2FNk/s , i.e.,

lg hik ≥
FNk

s

From Lemma (3) we further have for ∀k ∈ N, i ∈ [1; n]: lg hik ≤ lg n. Thus
for ∀k ∈ N, ∃i ∈ [1; n]

FNk

s
≤ lg hik ≤ lg n (8)

Concept Learning 8 / 19

Winnow: Mistake Bound (cont’d)

Since we assumed s > 0, (8) can be written as

FNk ≤ s lg n

If on the other hand s = 0 then the target disjunction is tautologically
false, so there are no false negatives, therefore FNk = 0 and the inequality
is satisfied trivially. Combining this with (7) we get for the total number
of mistakes

FPk + FNk ≤ 2 + 2s lg n

and since this value holds for any k ∈ N, we can write

∞∑
k=1

|rk | ≤ 2 + 2s lg n

which completes the proof. (exercise problem)

Concept Learning 9 / 19

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.winnow

Generalization: Mistake Bound

Theorem 2

Let X be contingent conjunctions made of up to n variables and let the
target hypothesis be a conjunction. The generalization algorithm makes at
most n mistakes, i.e.,

∞∑
k=1

|rk | ≤ n (9)

Thus the generalization algorithm learns conjunctions from contingent
conjunctions online. It also learns them efficiently (easy to check).

As any Boolean tuple can be represented through a contingent
conjunction, the theorem implies that the generalization algorithm learn
conjunctions online from X = { 0, 1 }n as well.

Concept Learning 10 / 19

Generalization: Mistake Bound (cont’d)

Proof of Theorem 2. By (??) , x ∈ X is classified positive iff h ⊆ x . Let h
be the target conjunction. So any x ∈ X is a positive example iff h ⊆ x .

1 h ⊆ h1 because h1 is set to be the first positive example. (Without
loss of generality, we start indexing from the instant immediately after
receiving the first positive example, thus skipping the waiting stage.)

2 ∀k : h ⊆ hk implies h ⊆ hk+1 If xk is classified correctly, then
hk+1 = hk and the implication holds trivially. If xk is a false positive,
i.e., h * xk , and hk ⊆ xk then from (??) and (??) , hk+1 = hk , and
again the implication holds trivially. Lastly, if xk is a false negative,
i.e., h ⊆ xk , and hk * xk then from (??) hk+1 = lgg(hk , xk). If
h ⊆ hk then both arguments of the lgg are subsumed by h and since
lgg is a least general generalization, h ⊆ lgg(hk , xk). Thus the
implication again holds.

3 ∀k ∈ N : h ⊆ hk – by induction using (1) and (2).

Concept Learning 11 / 19

Generalization: Mistake Bound (cont’d)

4 On each mistake at k , hk * xk , i.e xk is a false negative. This is
because if xk was a false positive, then h * xk and due to (3) also
hk * x , but then x is not classified as positive. So mistakes are made
only on positive examples.

5 On each mistake at k , hk+1 has strictly fewer literals than hk . This is
because due to (??) , hk+1 = lgg(hk , xk), and since lgg is a
least general generalization, it must be that hk+1 ⊆ xk . From (4), we
have hk * xk . Thus some literals of hk are not in hk+1.

6 Since examples are contingent, they have at most n literals (each of
the n atoms is included either as a positive or negative literal but not
both) and since h1 is the first positive example, it also has at most n
literals. Due to (5), at least one literal is removed on each mistake, so
the maximum number of mistakes is n, which completes the proof.

(exercise problem)

Concept Learning 12 / 19

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.prop-lgg-only-pos

Online Learnability

A concept class C on X is (efficiently) learnable from X online if there is
an algorithm that learns C from X (efficiently) online.

If for some hypothesis class H, C(H) is (efficiently) learnable from X
online, we say that H is (efficiently) learnable from X online. We have
seen that

monotone disjunctions are efficiently learnable online from truth-value
assignments by the Winnow algorithm.

conjunctions are efficiently learnable online from contingent
conjunctions (incomplete observations) by the generalization
algorithm.

From each of these two results, learnability of general disjunctions, which
are also called clauses, can be proven. We will look at two techniques to
achieve that.

Concept Learning 13 / 19

Attribute Expansion

(Efficient) online learnability of monotone disjunctions from X = { 0, 1 }n
by an algorithm implies the same for clauses:

Use the algorithm with X ′ = { 0, 1 }2n, presenting to it each x as

x ′(x) = x1, x2, . . . , xn, 1− x1, 1− x2, . . . , 1− xn

Reminder: superscripts are component indexes, not powers!

The disjunction h′ learned from X ′ is monotone but corresponds to
the (non-monotone) disjunction

h =
∨
i≤n

pn∈Lits(h′)

pi

∨
i>n

pn∈Lits(h′)

¬pi

on X , i.e., ∀x ∈ X : h(x) = h′(x ′(x)).

(Exercise problem)

Concept Learning 14 / 19

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.basis-expansion

Concept Inversion

(Efficient) online learnability of conjunctions from any X implies the same
for clauses.

Use the algorithm with inverted policy h′, i.e.

h′(x) = 1− h(x)

When h = L1 ∧ L2 ∧ . . . ∧ Ls (where Li are literals) is a conjunction
on X , i.e., then h′(x) is the policy prescribed by

¬h = ¬L1 ∨ ¬L2 ∨ . . . ∨ ¬Ls

which is a clause.

The reverse implication can be shown with the same reasoning.

Concept Learning 15 / 19

Online Learnability of Conjunctions and Clauses

With the two techniques, we can prove additional learnability results:

1 clauses are efficiently learnable online from X = { 0, 1 }n. (Proof: use
Winnow + attribute expansion.)

2 Conjunctions are efficiently learnable online from X = { 0, 1 }n.
(Proof: use Winnow + attribute expansion + concept inversion).

3 clauses are efficiently learnable online from X = contingent
conjunctions. (Proof: use generalization + concept inversion.)

Since a truth-value tuple can be represented by a contingent conjunction,
assertion 2 already follows from the mistake bound of the generalization
algorithm and assertion 3 implies assertion 1. However, Winnow used in 1
and 2 gives a better bound (O(lg n)) than generalization (O(n)).

Concept Learning 16 / 19

s-DNF

An s-conjunction is a conjunction with at most s literals. An s-DNF is a
disjunction of s-conjunctions.

For example, the “accepted form of authentication” concept description

password ∨ (fingerprint ∧ pin) ∨ (facescan ∧ pin)

or the “accepted form of payment” concept description

cash ∨ (creditcard ∧ ¬expired)

are both 2-DNF but not a 1-DNF.

We will use the name s-DNF also to denote the hypothesis class of
s-DNF’s.

Concept Learning 17 / 19

Online Learnability of s-DNF

Let c1, c2, . . . cn′ be all s-conjunctions on n variables. Using a variant of
the attribute expansion technique, we can reduce learning s-DNF from

X = { 0, 1 }n to learning monotone disjunctions from X ′ = { 0, 1 }n
′
.

Use an algorithm for learning a monotone disjunction on n′ variables,
presenting to it each x ∈ X as x ′(x) = x ′1, x ′2, . . . x ′n

′
where

x ′i (x) = 1 iff x |= ci (10)

The hypothesis h′ learned from x ′ is a monotone disjunction but
corresponds to the s-DNF ∨

{ i |pi∈Lits(h′) }

ci

on X , i.e., ∀x ∈ X : h(x) = h′(x ′(x)).

Concept Learning 18 / 19

Online Learnability of s-DNF (cont’d)

Assume we used an algorithm with mistake bound poly(n′). So s-DNF is
learnable online from X = { 0, 1 }n if n′ ≤ poly(n).

The number n′ of all s-conjunctions on n variables is the sum of the
number of conjunctions with exactly 0, 1, . . . s literals and the number of
literals is twice the number of atoms, i.e. 2n:

1 +

(
2n

1

)
+

(
2n

2

)
+ . . . +

(
2n

s

)
= O(ns) ≤ poly(n)

Here we used an exponential upper bound for binomial coefficients.

So the class s-DNF (for any constant s ∈ N) is efficiently learnable online
from X = { 0, 1 }n. Determining (10) for each of the n′ conjunctions takes
linear time (verify) so s-DNF is also learnable efficiently.

Concept Learning 19 / 19

https://en.wikipedia.org/wiki/Binomial_coefficient#Bounds_and_asymptotic_formulas

	Introduction
	Concept Learning

