
Deep Q-Learning: DQN

Learns to play ATARI 2600 games from screen images and score.
(DeepMind / Nature, 2015)

Deep feed-forward network approximating Q(x , y)

input = state = 4 time-subsequent 84x84
gray-scale screens

separate output for each y ∈ Y

2 convolution + 1 connected hidden layers

Demo

Reinforcement Learning 1 / 20

https://www.youtube.com/watch?v=W2CAghUiofY

Deep Q-Learning: DQN (cont’d)

Experience replay prevents long chains of
correlated training examples by sampling
from a buffer of ~φ(x), y , r , ~φ(x ′) tuples
recorded in the past.

Backpropagation to the
original image inputs
reveals areas of
‘attention’.

Reinforcement Learning 2 / 20

Policy Search

Instead of searching Q̂ / Û / p, search directly a good policy π : X → Y ,
i.e. pose the problem as a classification problem.

A feature-based approach applicable again:

π(x) = π′(φ1(x), . . . φn(x))

Quality of π′ is estimated as mean total rewards over repeated episodes
using π.

Gradient-based search for a π′ maximizing the quality not directly
applicable since Y is finite (discrete), and π′ thus not differentiable in its
argument.

Reinforcement Learning 3 / 20

Differentiable Policy Search

Gradient-based policy search is possible with a stochastic policy choosing
action y in state x with softmax probability

eq(w,φφφ(x ,y))∑
y ′∈Y eq(w,φφφ(x ,y ′))

where w ∈ Rn are real parameters, φφφ = 〈φ1, . . . , φn′〉 are some real-valued
features, and q : Rn+n′ → R. An example (in which n = n′)

q(w,φφφ(x , y)) =
n∑

i=1

w iφi (x , y)

If q differentiable in all φi as above then w can be learned through
stochastic gradient descent.

Reinforcement Learning 4 / 20

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Learning a Feature-Based Environment Model

The ADP agent derives its policy from a learned model of p of the
transition distribution P.

Such a model can also be feature based. So p(x ′|x , y) can be represeted
e.g. by

f (w,φφφ(x ′, x , y)) =
n∑

i=1

w iφi (x ′, x , y)

where φi are features of the x ′, x , y triple and w i real parameters. This
allows to use the gradient method as in the previous examples.

f need not even be normalized to the [0; 1] probability range if only used in

arg maxy expressions such as (??) .

Reinforcement Learning 5 / 20

Bayesian Learning of an Environment Model

Consider the following Bayesian approach (not to be confused with

Bayesian networks), which involves

a countable (possibly infinite) set M of probability distributions
(“model class”)

at each k ∈ N, a probability distribution Bk on M where Bk(p)
(p ∈M) quantifies the belief that P ≡ p

The probability model at k is then assumed as

pk(x ′|x , y) =
∑
p∈M

p(x ′|x , y)Bk(p) (1)

i.e, a weighted sum where each distribution from M contributes the
stronger the higher its belief.

Reinforcement Learning 6 / 20

Bayesian Learning of an Environment Model (cont’d)

Current Model Possible Environments MCurrent Belief

pk(x ′|x , y)
∑

p1(x ′|x , y)

p2(x ′|x , y)

p3(x ′|x , y)

Bk(p1)

Bk(p2)

Bk(p3)

Reinforcement Learning 7 / 20

Bayesian Learning of an Environment Model (cont’d)

As soon as xk+1 has been observed, Bk is updated by the Bayes rule to the
posterior

Bk+1(p) = αp(xk+1|xk , yk)Bk(p) (2)

for each p ∈M, where the normalizer α is such that∑
p∈M

Bk+1(p) = 1

Theorem 1

If p = P for some p ∈M and B1(p) > 0, then pk →k→∞ P.

So also the greedy policy (??) will converge to the optimal policy. The
Bayesian approach thus avoids the exploration-exploitation dilemma but
has a new element to supply: the initial belief B1.

Reinforcement Learning 8 / 20

Bayesian Learning - Continuous case

The Bayesian learning approach can be generalized to the continuous case
where the model class M is uncountable.

For example, M may be the class of (conditional) normal distributions
with all means and co-variances forming the real parameter vector w.

Then instead of (1) , we have

pk(xk+1|xk , yk) =

∫
w
p(xk+1|xk , yk ,w)B(w)

and the update (2) changes to

Bk+1(w) = αP(xk+1|xk , yk ,w)Bk(w)

Reinforcement Learning 9 / 20

Assumptions on Environments So Far

Recall the special assumptions we have imposed so far on the probabilistic
desription (??) of the environment, which is the product of (??) and (??) .

Mistake-bound learning: no assumption on observations, rewards by (??)

PAC learning: i.i.d. observations (??) , rewards by (??) (or (??) for
inconsistent learning)

Distribution learning (Bayes nets): i.i.d. observations (??) , rewards
case-specific, e.g. 0 for correct prediction of missing values,
-1 otherwise

Reinforcement Learning: observations by (??) (Markov property), rewards
by (??)

Let us now investigate if an agent can maximize the utility without such
assumptions.

Universal Learning 10 / 20

Universal Sequence Prediction

For the stated goal, the agent necessarily must be able to predict the
percept xrk from the history y≤k , xr<k so that xrk maximizes (??) .

For a start, we will disregard actions and rewards, and focus on the central
problem:

Universal Sequence Prediction Problem

Given a set X and a sequence

x1, x2, . . . xk ∈ X

predict xk+1 maximizing P(xk+1 | x≤k) without knowing P.

Universal Learning 11 / 20

Sequence Prediction

Some sequences seem obvious to extend. E.g.

1, 2, 3, 4, 5

because of the pattern xk+1 = xk + 1.

But e.g.
1, 2, 3, 4, 29

could also be argued due to xk = k4 − 10k3 + 35k2 − 49k + 24.

The first pattern seems more plausible because it is simpler. Note that this
reason is not statistical/probabilistic.

Universal Learning 12 / 20

Sequence Prediction (cont’d)

Other sequences have no obvious equational pattern

3, 1, 4, 1, 5, 9

but there is still a simple extension rule: here xk is the k’s digit in the
decimal expansion of the number π. So the extension 9 seems plausible
here.

We need to formalize these thoughts to answer questions such as

What exactly is meant by pattern?

How to measure complexity of patterns and sequences?

Are simple patterns more likely to make correct predictions?

Universal Learning 13 / 20

Computing a Sequence

The most general intepretation of sequence ‘pattern’ is a program that
generates the sequence.

For simplicity, let X = { 0, 1 } so X ∗ denotes the set of all finite binary
strings. Let T : X ∗ → X ∗ be a partial recursive function, i.e., there is a
Turing machine computing T (p) but for some p ∈ X ∗ it need not halt.

The input p to the T.M. may be interpreted as a program computing
T (p).

Here we assume the prefix Turing machine which as an input tape, output tape

(both unidirectional) and any finite number of bidirectional working tapes. This is

just for convenience, its expressive power is same as that of the vanilla Turing

machine.

Universal Learning 14 / 20

https://en.wikipedia.org/wiki/General_recursive_function

Computing a Sequence (cont’d)

Intuitively, simple strings (even infinite) are those computed by short
programs p.

So e.g. the decimal expansion of π, however long, is simple because there
is a short program computing it.

Denoting the length of p by |p|, this gives rise to the Kolmogorov
complexity of strings.

Universal Learning 15 / 20

Kolmogorov Complexity

The Kolmogorov complexity KT (q) of q ∈ X ∗ with respect to T is

KT (q) = min { |p| ; p ∈ { 0, 1 }∗ ,T (p) = q }

So the complexity of a (possibly infinite) string is the length of the
shortest program that generates it, i.e., the shortest binary input to T that
makes it produce the string.

Universal Learning 16 / 20

Kolmogorov Complexity (cont’d)

Dependence of KT (q) on T is not a serious problem as there is a
universal T.M. U which simulates any T.M. T given the (finite!)
sequential description 〈T 〉 ∈ X ∗ of T as a distinguished part of its input.

〈T 〉 can be distinguished from p on the input tape e.g. by putting the string

0|〈T〉|1 〈T 〉 p on it so that the number of leading zeros indicates the length of 〈T 〉.

Universal Learning 17 / 20

https://en.wikipedia.org/wiki/Universal_Turing_machine

Kolmogorov Complexity (cont’d)

Consequence: given a T , for every q ∈ X ∗:

KU(q) ≤ KT (q) +O(| 〈T 〉 |)

where the rightmost term (‘translation overhead’) does not depend on q
and becomes negligible for large q. So we adopt KU as the universal
complexity measure and denote K (q) = KU(q).

Clearly, for every q ∈ X ∗:

K (q) ≤ |q|+ c (3)

since the program for computing q can simply contain the |q| symbols of q
plus some constant c number of symbols implementing the loop to print
them on the output.

Universal Learning 18 / 20

Kolmogorov Complexity - Examples

q = 0, 0, . . . , 0︸ ︷︷ ︸
n times

has K (q) = log n + c . Need log(n) symbols to encode

the integer n plus a constant-size code to print it.

q = the first n digits in the binary expansion of π also has
K (q) = log n + c : log n symbols to specify n plus a constant-size
code for calculating (and printing) the digits of π.

Are there any strings q such that K (q) ≥ |q|?
Yes, such strings exist for any length k , as there are only 2k − 1
programs (binary strings) shorter than k , so there must be some
string of length k for which there is no shorter program generating it.
Such a string is called incompressible or random (not in the probabilistic

sense!).

Universal Learning 19 / 20

Kolmogorov Complexity - Computability

Theorem 2

The question whether K (q) ≥ n (q ∈ X ∗, n ∈ N) is undecidable, i.e., K is
not finitely computable.

Proof: Assume a deciding program p exists. Consider the first (in the
lexicographic order) string q ∈ X ∗ such that K (q) ≥ n.

Then q can be generated as follows: for each q ∈ X ∗ in the lexicographic
order, determine if K (q) ≥ n using p and print the first such q.

This procedure can be encoded in a program using |p|+ log(n) + c
symbols, which (for a sufficiently large n) is smaller than n, so K (q) < n,
yielding a contradiction. So p does not exist.

Universal Learning 20 / 20

	Introduction
	Concept Learning
	Bayesian Networks
	Reinforcement Learning
	Universal Learning

